
Uni�ed Sparse Formats for Tensor Algebra Compilers

by

Stephen Chou
BASc, Computer Engineering, University of Waterloo (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial ful�llment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 31, 2018

Certi�ed by .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Uni�ed Sparse Formats for Tensor Algebra Compilers

by

Stephen Chou

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2018, in partial ful�llment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
Tensor algebra is a powerful tool for computing on multidimensional data and has appli-
cations in many �elds. Practical applications often deal with tensors that are sparse, and
there exists a wide variety of formats for storing such tensors, each suited to speci�c types
of applications and data. Examples of sparse tensor storage formats include COO, CSR,
CSC, DCSR, BCSR, CSF, CSB, ELL, DIA, and hash maps.

In this thesis, we propose a levelized hierarchical abstraction that represents these
seemingly disparate formats and countless others, and that hides the details of each
format behind a common interface. We show that this tensor representation facilitates
automatic generation of e�cient compute kernels for tensor algebra expressions with
any combination of formats. This is accomplished with a code generation algorithm that
generates code level by level, guided by the capabilities and properties of the levels.

The performance of tensor algebra kernels generated using our technique is competitive
with that of equivalent hand-implemented kernels in existing sparse linear and tensor
algebra libraries. Furthermore, our technique can generate many more kernels for many
more formats than exist in libraries or are supported by existing compiler techniques.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This thesis includes work published in [34] that was done with Fredrik Kjolstad, Shoaib

Kamil, David Lugato, and Saman Amarasinghe. Special thanks goes to the coauthors of the

main work presented in this thesis: Prof. Saman Amarasinghe, who is also my research

advisor, and Fredrik Kjolstad. They contributed a lot of insightful feedback and ideas that

greatly improved the technique described in this thesis, as well as provided signi�cant

help with the presentation of the thesis. Their guidance and advice on graduate studies

and research in general were also invaluable. I would also like to thank Shoaib Kamil and

David Lugato for reviewing various drafts of the thesis and giving valuable feedback.

Additionally, I would like to thank Charith Mendis, Yunming Zhang, and Vladimir

Kiriansky for guidance they provided at various points with performance benchmarking

and debugging. I would also like to thank them, as well as Riyadh Baghdadi and Jessica

Ray, for all the interesting discussions on topics both relating and not relating to research.

Last but not least, I would like to thank my parents, Jennifer Wu and Perry Chou, for

the unconditional love and support they have always given me.

5

6

Contents

1 Introduction 13

2 Tensor Storage Formats 19

2.1 Existing Tensor Formats . 19

2.2 Supporting Diverse Formats . 25

3 Tensor Storage Abstraction 31

3.1 Coordinate Hierarchies . 31

3.2 Level Capabilities . 39

3.3 Level Properties . 43

3.4 Output Assembly . 46

4 Code Generation 51

4.1 Iteration Graphs and Merge Lattices . 51

4.2 Merge Lattice Optimizations . 54

4.3 Merging Coordinate Hierarchy Levels . 55

4.4 Iterator Conversion . 58

4.5 Code Generation Algorithm . 62

5 Evaluation 69

5.1 Experimental Setup . 69

5.2 Sparse Matrix Computations . 70

5.3 Sparse Higher-Order Tensor Computations 77

5.4 Comparison of Formats . 79

7

6 Related Work 83

7 Conclusion 87

A Sample Generated Kernels 89

8

List of Figures

1-1 Examples of the same order-2 tensor (matrix) stored in di�erent formats. . 14

1-2 Examples of coordinate hierarchies for the same tensor in di�erent formats 17

2-1 Examples of vector storage formats . 21

2-2 Examples of matrix storage formats . 23

2-3 Examples of 3rd-order tensor storage formats 25

2-4 Iterating a dense array and a sparse vector 27

3-1 Coordinate hierarchies for the same vector in various formats 32

3-2 Coordinate hierarchies for the same matrix in various formats 33

3-3 Coordinate hierarchies for the same matrix in the ELL and DIA formats . . 34

3-4 Coordinate hierarchy for the same matrix in the CSB format 35

3-5 Common variants of various tensor formats represented as hierarchical

compositions of level formats . 38

4-1 Iteration graphs for matrix addition . 53

4-2 Merge lattices for CSR matrix addition . 54

4-3 Optimal strategies for computing the intersection merge of two vectors . . 56

4-4 Iterator chaining . 60

4-5 Code generation algorithm . 65

4-6 Generated sparse matrix addition kernel before inlining 66

4-7 Generated sparse matrix addition kernel after inlining 67

5-1 Performance of COO SpMV with our technique and other libraries 72

5-2 Performance of COO SpDM with our technique and other libraries 73

9

5-3 Performance of COO matrix addition with our technique and other libraries 73

5-4 Performance of DIA SpMV with our technique and other libraries 74

5-5 Performance of CSR SpMV with our technique and other libraries 75

5-6 Performance of CSR SDDMM with our technique and other libraries . . . 76

5-7 Performance of CSR RESIDUAL with our technique and other libraries . . 76

5-8 Performance of CSR SpMV relative to COO SpMV 80

5-9 Performance of DIA SpMV relative to CSR SpMV 81

10

List of Tables

3.1 Access capabilities supported by di�erent level types 40

3.2 Properties of di�erent level types . 45

3.3 Assembly capabilities supported by di�erent level types 48

5.1 Summary of tensors used in experiments 71

5.2 Performance of various sparse tensor algebra kernels generated using our

technique and hand-implemented in other libraries 78

11

12

Chapter 1

Introduction

Tensor algebra is a powerful tool for computing on multidimensional data and has practical

applications in �elds ranging from data analytics and machine learning to the physical

sciences and engineering [1, 7, 2, 37, 23, 25, 32]. Tensors generalize matrices to any number

of dimensions and model multilinear relationships. Real-world applications often work

with tensors that are both very large and extremely sparse, meaning most components

are zeros. A tensor encoding product reviews on Amazon [45], for instance, contains

1.5×1019 components, but only one in 1010 is non-zero. To obtain reasonable computational

performance on tensors such as this, it is critical to take advantage of sparsity.

Many formats have been proposed for storing sparse matrices and tensors [68, 33, 55,

16, 15, 58, 10]. The appropriate choice of format depends on how the tensor will be used in

an application, on the structure of the data, and on the hardware. In some data analytics

applications, one needs to compute using a tensor only once, in which case a format like

the coordinate (COO) format that permits e�cient assembly and modi�cation can o�er

the best end-to-end performance. By contrast, in physical simulations and applications

that involve tensor factorization, sparse tensors are often reused in multiple iterations of a

computation and more space-e�cient formats, such as compressed sparse rows (CSR) or

compressed sparse �bers (CSF) [58], can signi�cantly reduce storage cost while accelerating

memory bandwidth-bound computations. If the tensors also exhibit regular structure, such

as in stencil computations or FEM simulations, then a specialized format like the diagonal

13

Columns (J)

R
o
w

s
(I)

3210

2

1

0 5

3 8

54

4 9

37

1

(a) An example of a 4×6 matrix

pos 0 7

idx 0 0

idx

vals

1 33 31

0 1 0 30 41

5 1 7 48 93

(b) Coordinate

4size

vals

pos 0 2 44

idx 0 1 10 0

7

3 4

5 1 37 8 4 9

(c) Compressed sparse row

4size

6size

5 1 0 0 0 0 7 3 0 0 0 0vals 0 0 0 0 0 0 8 0 0 4 9 0
(d) Dense array

Figure 1-1: Examples of the same order-2 tensor (matrix) stored in di�erent formats.

(DIA) format or block CSR (BCSR) can take advantage of hardware features such as SIMD

extensions to further boost computational performance.

The existence of all these formats poses a signi�cant challenge when computing with

sparse tensors. As Figure 1-1 illustrates, the exact same tensor can be encoded in drastically

di�erent ways depending on which format it is stored in. Some tensor formats, like the

COO format (Figure 1-1b), explicitly store the coordinates of every non-zero component.

Others, like the dense array format (Figure 1-1d), use just a few parameters (e.g., the size

parameters) to succinctly encode the complete set of coordinates that are assumed to have

non-zero values. Additionally, many formats implicitly impose restrictions on how to

e�ciently iterate non-zeros; the CSR format, for instance, permits e�ciently accessing all

non-zero columns in any given row (by indexing the pos array with the row coordinate)

but does not allow e�ciently accessing all non-zero rows in a given column. As a result,

e�ciently computing even tensor algebra expressions that only have a single operand

requires specialized code for every possible tensor format.

Multiple tensor operands further complicate the issue as every combination of tensor

formats for encoding the operands e�ectively requires specialized code as well. Di�erent

combinations of tensor formats require di�erent strategies for merging the iteration spaces

of the tensor operands, leading to compute code with dissimilar structures. Consider, for

instance, the component-wise multiplication of two order-2 tensors (matrices) B and C . If

14

both matrices are stored as dense arrays, then they must share the same dense iteration

space, in which case code to compute the operation can simply iterate over this shared

iteration space (lines 1–2) and, at each point, multiply the corresponding components in

the two tensor operands (line 3):

1 for (int i = 0; i < B1_size; ++i) {

2 for (int j = 0; j < B2_size; ++j) {

3 A[i * A2_size + j] = B[i * B2_size + j] * C[i * C2_size + j];

4 }

5 }

If B is stored in the CSR format, code to compute the operation can rely on the fact that

dense arrays support e�cient random access to just iterate the non-zero components

of B (lines 1–3) and, for each non-zero coordinate, pick out the corresponding non-zero

component from C (line 4). This method requires di�erent code than before that iterates

over the column dimension by reading from the idx array (lines 2–3):

1 for (int i = 0; i < B1_size; ++i) {

2 for (int pB2 = B2_pos[i]; pB2 < B2_pos[i + 1]; ++pB2) {

3 int j = idx[pB2];

4 A[i * A2_size + j] = B[pB2] * C[i * C2_size + j];

5 }

6 }

However, merging the iteration spaces of the tensor operands becomes much more com-

plicated if C is also stored in the COO format (assuming non-zero coordinates are stored

in order), as neither it nor the CSR format supports e�cient random access. Thus, iter-

ating over the column dimension requires much di�erent code than before that instead

co-iterates and merges the column dimensions of B and C (lines 7–18). Code to compute

the operation also needs additional logic to ensure that the same row in C is not visited

multiple times (lines 4–6), since the COO format may store duplicate copies of the same

row coordinate (once for each non-zero in the row):

1 int pC1 = C1_pos[0];

2 while (pC1 < C1_pos[1]) {

15

3 int i = C1_idx[pC1];

4 int C1_segend = pC1 + 1;

5 while (C1_segend < C1_pos[1] && C1_idx[C1_segend] == i)

6 ++C1_segend;

7 int pB2 = B2_pos[i];

8 int pC2 = pC1;

9 while (pB2 < B2_pos[i + 1] && pC2 < C1_segend) {

10 int jB2 = B2_idx[pB2];

11 int jC2 = C2_idx[pC2];

12 int j = min(jB2, jC2);

13 if (jB2 == j && jC2 == j) {

14 A[i * A2_size + j] = B[pB2] * C[pB2];

15 }

16 if (jB2 == j) ++pB2;

17 if (jC2 == j) ++pC2;

18 }

19 pC1 = C1_segend;

20 }

The sheer number of dissimilar kernels that are needed to e�ectively support a diverse

range of tensor formats makes it impractical to implement all of them manually, motivating

a metaprogramming approach that can instead generate these kernels automatically.

Of course, the combinatorial explosion of tensor format combinations also makes

it unrealistic for any tensor algebra compiler to simply hard code for each individual

format. This motivates the need for a common abstraction that can represent any tensor

storage format, which a compiler can more manageably reason about and generate code

for. In Chapter 3, we describe how tensor storage can be viewed as a hierarchy of levels

that each encode coordinates along a tensor dimension; Figure 1-2 shows examples of

such coordinate hierarchies for the same matrix stored in di�erent formats. We then

demonstrate how common variants of a wide range of tensor formats, including all of

the ones mentioned above, can be represented as compositions of just six per-dimension

formats that encode coordinate hierarchy levels: dense, range, compressed, singleton, o�set,

and hashed. We further show how these per-dimension level formats can be abstracted in

16

0

0

1

0

3

3

5 1 7 3 8 4 9

1

0

1

1

0

3

4

3

B
I

J

vals

(a) Coordinate

210 3

0 1

5 1 7 3 8 4 9

B

0 1 0 3 4

I

J

vals

(b) Compressed sparse row

0 1 2 3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

5 1 0 0 0 0 7 3 0 0 0 0 0 0 0 0 0 0 8 0 0 4 9 0

B

I

J

vals

(c) Dense array

Figure 1-2: Coordinate hierarchies for the same matrix from Figure 1-1a stored in di�erent
formats. The structure of each coordinate hierarchy re�ects how the underlying storage
format encodes non-zeros.

terms of �ve properties and �ve capabilities that describe how to iterate, index into, and

modify a tensor dimension, which are exposed through a common abstract interface.

We then describe a code generation algorithm based on this abstraction that emits

e�cient code to compute any compound tensor algebra expression, where the operands

can be stored in any combination of tensor formats that are assembled from level formats

(Chapter 4). The algorithm works by emitting code that e�ciently iterates and merges

coordinate hierarchy representations of the tensor operands by calling functions that the

level format interface exposes. A simple inlining pass then specializes the emitted code to

work with speci�c tensor formats. The coordinate hierarchy abstraction enforces a strict

separation between tensor storage formats and the code generation algorithm, ensuring

that the algorithm does not have to directly reason about speci�c formats and thereby

limiting the complexity of the algorithm, which keeps it maintainable.

To summarize, we make the following contributions:

Levelization We show how common variants of a whole host of tensor formats, in-

cluding all of the ones mentioned above and many more (Chapter 2), can be represented

as hierarchical compositions of just six per-dimension level formats (Figure 3-5).

17

Level abstraction We describe an abstraction for level formats (Chapter 3), which

hides the speci�cs of how a level encodes a tensor dimension behind a common interface

that exposes a level format’s capabilities (e.g., how to iterate coordinates along a tensor

dimension) and properties (e.g., whether coordinates are ordered).

Code generation We present a code generation technique that generates code to

e�ciently compute on sparse tensors stored in any format (Chapter 4), which reasons

only about capabilities and properties of each dimension and does not rely on knowledge

speci�c to particular level formats.

We implement our code generation technique as an extension to the open-source

tensor algebra compiler taco [35]. taco is based on the work of Kjolstad et al., and its

code generator is hard-coded to just two per-dimension storage types [34]. The modular

nature of our extended compiler enables users to compute with a much wider set of tensor

formats, which can moreover be expanded without needing to modify the code generation

algorithm. We evaluate our technique against a range of existing sparse linear and tensor

algebra libraries and �nd that our technique is able to generate sparse kernels for diverse

storage formats with performance competitive with hand-implemented kernels (Chapter 5).

18

Chapter 2

Tensor Storage Formats

There exists a multitude of formats for storing tensors, many of which are commonly used

in real-world applications. None of these formats is ideal in every circumstance; each can

be useful depending on the structure of the data, the characteristics of the computation,

and the underlying hardware. This makes it desirable to support e�ciently computing on

as many tensor formats as possible. As we will show, however, e�ciently computing on

di�erent formats requires dissimilar code that speci�cally accommodates and exploits the

idiosyncrasies of each format, which cannot be practically implemented by hand and is

also challenging to automatically generate.

2.1 Existing Tensor Formats

Figures 2-1, 2-2, and 2-3 highlight examples of tensor formats that have been described in

the literature. A straightforward way to store an nth-order tensor (i.e. a tensor consisting of

n dimensions) is to use an n-dimensional dense array that explicitly stores all components

of the tensor, including all the zeros. Figures 2-1b and 2-2b illustrate this for an order-1

tensor (i.e., a vector) and an order-2 tensor (i.e., a matrix) respectively. A desirable feature

of dense arrays is that the value at any given coordinate can be accessed in constant time.

However, storing a sparse tensor in a dense array is ine�cient since a lot of memory is

wasted explicitly storing zeros. All these zeros must also be processed when computing

on the tensor even though they do not meaningfully contribute to the result, which is

19

detrimental to performance. For tensors with many dimensions that are large, it may even

simply be impossible to use a dense array due to lack of memory; using a dense array to

store the Amazon reviews tensor described in Chapter 1, for instance, would require 107

exabytes of storage (assuming each component is stored as a double-precision �oat).

The simplest approach to e�ciently store a sparse tensor is to just keep a list of its

non-zero coordinates and values (Figures 2-1c, 2-2c, and 2-3b). This is sometimes referred

to as sparse vectors in the context of 1st-order tensors and usually known as the coordinate

(COO) format for tensors of higher order. Not only does the COO format consume only

O(nnz) memory, it also closely resembles many common �le formats for storing tensors

including the Matrix Marketplace exchange format [50] and the FROSTT sparse tensor

format [57]. This helps minimize preprocessing cost as inserting non-zero coordinates and

values simply requires appending them to the idx and vals arrays.

Unlike dense arrays, the COO format does not provide constant-time random access.

Hash maps (Figure 2-1d) eliminate this pitfall by using a hash table to store the tensor’s

non-zero coordinates. This, however, comes at the cost of losing the ability to e�ciently

iterate only non-zeros in order, which can complicate certain computations.

The compressed sparse row (CSR) format for sparse matrices (Figure 2-2d) addresses

another drawback of the COO format, namely that it redundantly store coordinates. Re-

dundant coordinates not only increases storage cost but also reduces the performance of

memory bandwidth-bound computations like sparse matrix-vector multiplication (SpMV).

In Figure 2-2c, for instance, the row coordinates of the �rst three non-zero components are

all explicitly stored even though they actually belong to the same row of the matrix. The

CSR format compresses out these redundant row coordinates using an auxiliary array (pos

in Figure 2-2d, though it is also often labeled row_ptr in other sources) that keeps track of

which segment of non-zeros belongs to which row. The compressed sparse column (CSC)

format (Figure 2-2e) follows the same basic principle but instead compresses out redundant

column coordinates. The doubly compressed sparse row (DCSR) format (Figure 2-2f) and

the corresponding doubly compressed sparse column (DCSC) format, proposed by Buluç

and Gilbert, achieve additional compression for hypersparse matrices by only keeping

track of the rows or columns that actually contain non-zeros [16]. For higher-order ten-

20

sors, Smith and Karypis described a generalization of (D)CSR, which they refer to as the

compressed sparse �bers (CSF) format (Figure 2-3c), that uses the same index structures as

CSR to represent each dimension and store only the non-zero �bers of a tensor [58, 59].

However, all these compressed formats tend to be much more complicated and expensive

to assemble than the COO format and even harder to modify.

Many important classes of applications work with tensors whose non-zero compo-

nents are distributed in some sort of regular pattern. Matrices that encode vertex-edge

connectivity of unstructured meshes, for instance, tend to have a �xed number of non-zero

components per row. The ELLPACK (ELL) format (Figure 2-2g) takes advantage of this

by storing the column coordinates and values of all non-zero components such that the

kth non-zeros of all rows are kept contiguous in memory, which makes it possible to

vectorize SpMV [22]. If all the non-zero components are restricted to a few densely-�lled

diagonals, then the coordinates of the non-zeros can actually just be computed from the

o�sets of the diagonals. which allows the diagonal (DIA) format (Figure 2-2h) to forgo

explicitly storing the column coordinates altogether. For matrices that do not conform to

the assumed structures though, these structured formats must unnecessarily store many

zeros, which can drastically increase storage cost and degrade computational performance.

Columns (J)
3210 54

GF

10 116 7 8 9

EC

12 13 14 15

A D HB

(a) An example of an 8-vector

size

Avals 0 0 B 0 C D 0 E 0 0 0 F G H 0

16

(b) Dense array

0 3 5 86

A B C FE GD Hvals

pos 0 8
idx 131412

(c) Sparse vector

0 5 63

A F G CH DB 0vals

size
idx

12
8

E 0 00

1312 14 -1 -1 -1 -1

(d) Hash map

Figure 2-1: Examples of various vector storage formats storing the same vector. Cells
shaded gray identify non-zero components in the vector while cells shaded light blue
identify elements in the physical indices that encode a particular non-zero component.

21

Columns (J)

R
ow

s
(I)

3210

2

1

0

3

54 10 116 7 8 9

6

5

4

7

8

A C

JI

D E

G H

B

F

R

K L

S

QM N P

T

U V

(a) An example of a 9×12 matrix

9size

size

A 0 0 B 0 0 C 0 0 0 0 0
vals

12

D E 0 0 F 0 0 0 0 0 0 0 0 G H 0 0 0 0 0 0 0 0 0
0 0 I J 0 0 K 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M N 0 0 P 0 0 Q
0 0 0 0 0 R S 0 0 T 0 U 0 0 V

(b) Dense array

pos 0
idx 0 0

idx

vals

0 11 21

0 3 6 41 10

A B C FE GD

21
2 3 3 53 53

2 2 3 49 56

H I J ML NK

5 5 6 86 86

8 5 896

P Q R UT VS

11 11

(c) Coordinate

9size

vals

pos 0 3 86
idx

211919121216
0 3 6 41 10

A B C FE GD

2 2 3 49 56

H I J ML NK

8 5 896

P Q R UT VS

11 11

(d) Compressed sparse row

size

vals

pos 0 2 64
idx

8 1715151012
0 1 1 32 02

A D E IH BG

3 1 5 06 35

J F M CR KN

6 5 8 56 83

S P U QT VL

12

1919 21

(e) Compressed sparse column

22

0 3 6 41 10

A B C FE GD

2 2 3 49 56

H I J ML NK

8 5 896

P Q R UT VS

11 11

vals

pos 0 3 86
idx

21121619

2
pos 0 7
idx 0 1 63 5 8

(f) Doubly compressed sparse row

9size

0idx

A D H J 0 Nvals R 0 T B E I

4size

0 1 2 0 4 9 0 8 3 1 2 3

K 0 P S 0 U C F 0 L 0 Q

1 5 1 9 5 4 0 6 2 8 0

0 0 V 0 G 0 M 0 0 0 0 0

2 1 6 3 8 3 0 1 3 011 11

(g) ELLPACK

9size

offset
4size

0 3 6-1

12size

0 D G I 0 Mvals R 0 0 A E H J 0 N S 0 U B F 0 K 0 P T 0 V C 0 0 L 0 Q 0 0 0

(h) Diagonal

2size

pos 0 2 5
idx 0 1 0

3size

4size

7
1 2 1 2

A 0 0 B D E 0 0 0 G H 0
vals

0 0 C 0 F 0 0 0 0 0 0 0 0 0 I J 0 0 0 0 0 0 0 0
0 0 K 0 0 0 0 0 M N 0 0 0 L 0 0 0 0 0 0 P 0 0 Q 0 R S 0 0 0 0 0 0 0 0 0
0 T 0 0 0 0 0 0 U 0 0 V

(i) Block compressed sparse row

3size

3size

pos 0 6
idx 0 0

idx

vals

1 22 01

0 3 0 21 21

A B D HG CE

88 211013161618
1 0 0 22 00

0 2 3 10 12

F I J NM LK

2 2 0 20 20

0 3 1 01 22

P Q R UT VS

(j) Compressed sparse block

Figure 2-2: Examples of various matrix storage formats storing the same matrix.

23

Z Θ
Λ

Γ
Δ

Π
Σ

Φ
Ψ

Ω

T

U

W

V X

Y

H J

I K

L

M

N

P

Q

R

S

A

C

B

D

E

F

G

Columns (J)
3210 54 6 7 8

R
o
w

s
(I)

2

1

0

3

5

4

0

1

2

3

Tu
b

es
 (K

)

Δ

(a) An example of a 6×9×4 tensor

pos 0
idx 0 0

idx

0 00 00

0 0 4 66 64

34
1 1 1 11 11

1 1 2 72 72

1 1 1

7 7 8

vals A B C FE GD H I J ML NK P Q R

idx 0 2 1 10 33 1 2 1 03 12 2 3 0

1 3 3 33 33

8 1 1 44 41

5 5 5 55 55

0 0 0 33 33

5 5 5

7 7 7

S T U XW YV Z Γ Δ ΠΛ ΣΘ Φ Ψ Ω

1 0 1 20 32 0 2 3 21 30 0 1 3

(b) Coordinate

24

0 4 6 72 81 1 4 0 73
pos 0 3 97
idx

12

3
pos 0 4
idx 0 1 5

vals

pos 0 2 74
idx

9 12

A B C FE GD H I J ML NK P Q R S T U XW YV Z Γ Δ ΠΛ ΣΘ Φ Ψ Ω

241618 21 27 3431
0 2 1 10 33 1 2 1 03 12 2 3 0 1 0 1 20 32 0 2 3 21 30 0 1 3

(c) Compressed sparse �ber

0 4 6 72 81 1 4 0 73idx

0
pos 0
idx 0 0 1

vals

size 4

A 0 B C0 00 D E F 0G H0 I 0 0 J K L PN QM R S 0 UT V0 0 W 0

12
11 1 3 3 5 55

X Y
0Z Γ Δ Θ Λ ΦΣ ΨΠ 0 Ω

(d) Mode-generic sparse tensor

Figure 2-3: Examples of various tensor storage formats storing the same 3rd-order tensor.

The block compressed sparse row (BCSR) format (Figure 2-2i) generalizes CSR by

storing a dense block of non-zeros in the vals array at every non-zero coordinate. This

exposes opportunities for vectorization and vector reuse in SpMV and is ideal for blocked

matrices from FEM applications. The mode-generic sparse tensor storage format (Figure 2-

3d), proposed by Baskaran et al., generalizes the idea of the BCSR format to higher-order

tensors by storing a tensor as a sparse collection of arbitrary-order dense blocks, using

the COO format (the idx arrays in Figure 2-3d) to represent the sparse collection [10]. By

contrast, the compressed sparse block (CSB) format (Figure 2-2j), proposed by Buluç et al.,

represents a matrix as a dense collection of sparse blocks stored in the COO format (the

idx arrays in Figure 2-2j) and can be viewed as the converse of BCSR [15].

2.2 Supporting Diverse Formats

Maximizing the performance of sparse tensor computations with each of these di�erent

formats requires specialized code that accommodates and exploits each format’s idiosyn-

crasies. As the examples below demonstrate though, even code that does something as

25

seemingly simple as iterating a tensor can vary signi�cantly in structure from one format to

another, motivating a metaprogramming approach that removes the need for programmers

to manually implement all these wildly di�erent kernels. For instance, iterating a dense

array that stores a vector entails looping over coordinates along the vector’s dimension

and using those coordinates to index into the vals array and retrieve the corresponding

component values, as Figure 2-4a illustrates. The code below implements this algorithm:

1 for (int i = 0; i < size; ++i) {

2 double v = vals[i];

3 printf("x(%d) = %f\n", i, v);

4 }

Iterating a sparse vector, on the other hand, requires looping over positions in the physical

indices and accessing the idx and vals arrays at each position to retrieve the corresponding

coordinate and component value, as Figure 2-4b demonstrates. The code below, which is

signi�cantly di�erent from the one shown before, implements this algorithm:

1 for (int p = pos[0]; p < pos[1]; ++p) {

2 int i = idx[p];

3 double v = vals[p];

4 printf("x(%d) = %f\n", i, v);

5 }

Kernels for iterating many other common tensor formats mix elements of both examples

above. E�ciently iterating the CSR format, for instance, involves looping over coordinates

along the row dimension (line 1) and, for each row coordinate, iterating over positions in

the idx and vals arrays that store the corresponding non-zero columns (line 2):

1 for (int i = 0; i < size; ++i) {

2 for (int p = pos[i]; p < pos[i + 1]; ++p) {

3 int j = idx[p];

4 double v = vals[p];

5 printf("A(%d, %d) = %f\n", i, j, v);

6 }

7 }

26

for (int i = 0; i < size; ++i) {

3210 54

E JH

6 7 8 9

C IFBA GDvals

component value

coordinate position
coordinate value

(a) Iterating a dense array

for (int p = pos[0]; p < pos[1]; ++p) {

3210 54

7 1411

6 7 8 9

3 12820 105

3210 54

E JH

6 7 8 9

C IFBA GD

component value

idx

vals

coordinate value

coordinate position

(b) Iterating a sparse vector

Figure 2-4: Iterating a dense array and a sparse vector requires accessing their correspond-
ing physical indices in very di�erent ways. The former entails looping over coordinates (i)
and indexing into the vals array using those coordinates, while the latter entails looping
over positions (p) and accessing the coordinates and component values stored in the idx
and vals arrays at those positions.

27

Critically, the code above iterates over the row dimension in the outer loop and the

column dimension in the inner loop, since the CSR format allows e�ciently determining

which columns encoded in the idx array correspond to a particular row by simply indexing

the pos array. To iterate over the column dimension in the outer loop, on the other hand,

would require scanning the entire index structure for each column coordinate in order

to identify all the non-zero rows in that column, which is clearly ine�cient. The reverse

is true for the CSC format; to e�ciently iterate a CSC matrix requires iterating over the

column dimension in the outer loop and the row dimension in the inner loop (but with

otherwise identical code as before):

1 for (int j = 0; j < size; ++j) {

2 for (int p = pos[j]; p < pos[j + 1]; ++p) {

3 int i = idx[p];

4 double v = vals[p];

5 printf("A(%d, %d) = %f\n", i, j, v);

6 }

7 }

In all of the examples above, coordinates along di�erent dimensions of a tensor can be

iterated independently using one iterator per dimension. However, certain tensor formats

require iterating multiple dimensions concurrently when enumerating non-zeros. Iterating

a COO tensor, for instance, is typically accomplished with a single non-nested loop (line 1)

and a shared iteration variable (p) that is used to directly index into all of the idx arrays

and load the corresponding coordinates for all dimensions (lines 2–4):

1 for (int p = pos[0]; p < pos[1]; ++p) {

2 int i = idx1[p];

3 int j = idx2[p];

4 int k = idx3[p];

5 double v = vals[p];

6 printf("A(%d, %d, %d) = %f\n", i, j, k, v);

7 }

For some formats, the coupling between tensor dimensions extends beyond iterators to the

actual coordinates. E�ciently iterating a DIA matrix, for example, requires looping over

28

coordinates along the row dimension (line 2) and, for each row coordinate, computing the

corresponding column coordinate as a function (more speci�cally, an additive o�set) of

the row coordinate (line 3):

1 for (int d = 0; d < size1; ++d) {

2 for (int i = max(0, -offset[d]), i < min(size2, size3 - offset[d]); ++i) {

3 int j = i + offset[d];

4 double v = vals[d * size2 + i];

5 printf("A(%d, %d) = %f\n", i, j, v);

6 }

7 }

Additionally, some tensor formats naturally impose constraints on how coordinates

can be enumerated e�ciently. As an example, the positions of coordinates in a hash map

sparse vector’s idx array are determined by the coordinates’ hash values. Consequently,

no code that iterates a hash map sparse vector’s non-zeros in asymptotically optimal time,

such as the one shown below, can guarantee that coordinates are enumerated in order.

1 for (int p = pos[0]; p < pos[1]; ++p) {

2 if (idx[p] != -1) {

3 int i = idx[p];

4 double v = vals[p];

5 printf("x(%d) = %f\n", i, v);

6 }

7 }

To e�ciently iterate a hash map sparse vector in order requires signi�cantly more complex

code. One approach, shown below, is to �rst assemble a scratch array that stores all non-

zero coordinates from the hash map in sorted order (lines 4–12), and to then iterate the

scratch array instead of the hash map (lines 14–18). As with any method that guarantees

ordered enumeration for a hash map sparse vector, this code exhibits worse performance

than the previous example due to the need for the sort operation and must therefore be

avoided if a computation does not actually need in-order enumeration.

1 typedef struct { int i; int p; } coord;

29

2 coord coords[];

3
4 int nnz = 0;

5 for (int p = pos[0]; p < pos[1]; ++p) {

6 if (idx[p] != -1) {

7 coords[nnz].p = p;

8 coords[nnz].i = idx[p];

9 ++nnz;

10 }

11 }

12 sort(coords, nnz);

13
14 for (int n = 0; n < nnz; ++n) {

15 int i = coords[n].i;

16 double v = vals[coords[n].p];

17 printf("x(%d) = %f\n", i, v);

18 }

These are just a few examples of the kinds of code that any compiler for sparse tensor

computation has to be able to generate in order to achieve performance that is competitive

with hand-implemented code for a diverse range of tensor storage formats.

30

Chapter 3

Tensor Storage Abstraction

The tensor storage formats examined in the previous chapter represent just a subset of the

many formats that have been described in the literature. Moreover, most computations

deal with multiple inputs that can each be stored in a di�erent format, and, as we discussed

in Chapter 1, e�ciently computing with any particular combination of formats requires

specialized code with distinct structure. Given the sheer number of tensor formats and

an even larger number of combinations of these formats, it is impractical for any tensor

algebra compiler to hard code for each individual format. This motivates the need for a

common abstraction that can represent any tensor storage format, which a code generator

can more manageably reason about and work with.

As we demonstrate in the rest of this chapter, common variants of all the aforementioned

tensor formats can, in fact, be described in terms of just six per-dimension formats that

can be composed in a hierarchical fashion. We show how per-dimension formats such

as these can be abstracted in terms of their properties and capabilities, which generalize

recurring patterns that we examined in Section 2.2 for e�ciently accessing a tensor and

which guide the format-agnostic code generation technique we will describe in Chapter 4.

3.1 Coordinate Hierarchies

The idea of per-dimension formats can best be understood by viewing tensor storage as

a composition of levels that each encode coordinates along one tensor dimension. Edges

31

0 2 5

A 0 0 B 0 C D

1 3 4 6

B

7 9 128 10 11 13 14 15

0 E 0 0 0 F G H 0

J

vals

(a) Dense array

0 5 12

A B C D E F G

3 6 8 13

B

14

H

J

vals

(b) Sparse vector

0 13 5

A F G B H C D

12 3 14 6

B

8

0 E 0 0 0

J

vals

(c) Hash map

Figure 3-1: Coordinate hierarchies for the same vector from Figure 2-1a stored in di�erent
vector formats. A coordinate hierarchy’s structure re�ects how the underlying storage
format encodes non-zeros; the arrangement of coordinates in (b) and (c), for instance,
mirrors the order in which coordinates are stored in the idx array.

connect coordinates in adjacent levels, forming a coordinate hierarchy. Figures 3-1, 3-2,

3-3, and 3-4 show some examples of coordinate hierarchies for the same vector and matrix

(from Figure 2-1a and Figure 2-2a) stored in di�erent formats, with component values at

the bottom of each hierarchy. A fully labeled path from the root to a leaf in a coordinate

hierarchy describes one tensor component, with its coordinates speci�ed by the labels along

the path. In Figure 3-2b, for instance, the rightmost path represents the tensor component

B(8, 11) with its corresponding valueV . As we will show in Chapter 4, representing tensor

storage in this hierarchical fashion enables our code generation technique to decompose

arbitrary computations into simpler problems of merging levels that represent tensor

dimensions, which makes the problem of generating tensor algebra kernels tractable.

The structure of a tensor’s coordinate hierarchy re�ects how the underlying storage

format encodes the tensor’s non-zeros. For example, the coordinate hierarchy for a tensor

stored as a dense array (Figure 3-1a) forms a full tree with every tensor component

represented by a path, which mirrors how a dense array stores every value including zeros.

On the other hand, the coordinate hierarchy for a COO tensor (Figure 3-2a) consists of

chains of coordinates that each encodes a non-zero tensor component, which re�ects how

the COO format explicitly stores the complete tensor coordinate of every non-zero. By

32

0

0

0

6

1

4

A B C D E F G

3

0

0

1

1

1

1

2

B

2

2

3

3

5

42

3

6

3

9

3

5

5 5

8

6

5

8

811

5

6

6

9

6

11

8

H I J K L M N P Q R S T U V

I

J

vals

(a) Coordinate

0 6 4

A B C D E F G

3

0

0 1

1

1

2

B

2

3

3 42 6 9 5

5

8 5

8

811 6

6

9 11

H I J K L M N P Q R S T U V

I

J

vals

4 7

(b) Compressed sparse row

0 1 3

A D E G H I B

1

0

2 2

1

0

2

B

3

3

5 01 5 6 3

5

6 8

8

55 3

6

6 8

J F M N R C K S P U L T Q V

J

I

vals

4 7 9 1110

(c) Compressed sparse column

0 6 4

A B C D E F G

3

0

0 1

1

1

2

B

2

3

3 42 6 9 5

5

8 5

8

811 6

6

9 11

H I J K L M N P Q R S T U V

I

J

vals

(d) Doubly compressed sparse row

Figure 3-2: Coordinate hierarchies for the same matrix from Figure 2-2a stored in di�erent
matrix formats. The label beside each level identi�es the matrix dimension it represents.

33

0
2

5
1

0

3
4

6

B

7

1

0
3

8
1

2
4

5
7

1
6

8
0

2
I

2
3

0
1

4

A
D

H
J

0
N

R

0
2

0
9

0
3

3
8

1
2

1
5

1
4

11
9

5
0

0
T

B
E

I
K

0
P

S
0

U

J

va
ls

C
F

0
L

0
Q

0
0

V
0

G
0

M
0

0
0

0
0

3
5

8
4

6
7

0
1

3
6

2
4

5
7

8

6
8

11
2

0
2

1
6

8
1

3
3

0
3

0

(a) ELLPACK

2
5

1

0

3
4

6

B

7

1

0
3

8
1

2
4

5
7

1
6

8
0

2
I

2
3

1
4

0
D

G
I

0
M

R

0
2

3
5

6
0

3
7

1
2

4
5

7
4

6
8

3
5

0
0

A
E

H
J

0
N

S
0

U

J

va
ls

B
F

0
K

0
P

T
0

V
C

0
0

L
0

Q
0

0
0

3
5

8
4

6
7

0
1

3
2

4
5

6
8

11
7

9
10

6
7

9
8

10
11

(b) Diagonal

Figure 3-3: Coordinate hierarchies for the same matrix stored in the ELL and DIA formats.

34

0

0

1

0

2

2

A B D E G H C

3

0

1

1

1

2

2

0

B

1

0

0

3

2

12

0

2

0

0

2

1

0 2

0

0

1

2

03

2

2

0

1

0

2

2

F I J K M N L P Q R S T U V

Jinner

vals

0

0 1 0 1

1

2 1 2

2

2 0Jouter

Iinner

Iouter

Figure 3-4: Coordinate hierarchy for the same matrix stored in the CSB format.

contrast, the coordinate hierarchy for a CSR matrix (Figure 3-2b) has column coordinates

that belong to the same row share the same parent, which re�ects how the CSR format

compresses out redundant row coordinates using the auxiliary pos array.

A coordinate hierarchy has one level—shaded light gray in Figure 3-2—for every

tensor dimension, and per-dimension level formats describe how to store the hierarchy

levels. Each position (a node) in a coordinate hierarchy level may encode some coordinate

(the number in the node) along the corresponding tensor dimension. (Alternatively, a

position may contain a dummy node that does not encode any coordinate, like the empty

nodes in Figure 3-1c.) Each position may also be connected to a parent in the previous

level. Coordinates that share the same parent are referred to as siblings; the coordinates

highlighted in dark gray in Figure 3-2b, for instance, are siblings that share the same parent

coordinate encoding the fourth row of the matrix (we assume coordinates are zero-based).

A level’s format describes some encoding of a list of numbers that represent coordinates

along the corresponding dimension. Depending on the level format, such a list of dimension

coordinates can be implicitly encoded (e.g., as a range of coordinates succinctly described

by its bounds) or explicitly stored (e.g., as a segmented vector). Here we propose six distinct

level formats that are su�cient to represent all the tensor formats described in Chapter 2.

Given a parent coordinate in any coordinate hierarchy, these level formats encode the

corresponding child coordinates as follows:

35

Dense levels store the size of the corresponding tensor dimension (N) and encode all

coordinates in the range [0,N). Figure 3-2b shows the row dimension of a CSR matrix

encoded as a dense level with the following data structure:

9N

Range levels encode all coordinates in a range with bounds computed as a function of

a tensor diagonal o�set stored in the offset array and tensor dimension sizes N and

M . Figure 3-3b shows the row dimensions of a DIA matrix encoded as a range level

with the following data structures:

9N

-1offset 0 3 6

12M

Compressed levels store coordinates in a segment of a segmented vector (idx), with

the bounds of the segment stored in the pos array. Figure 3-2b shows the column

dimension of a CSR matrix encoded as a compressed level with the following data

structures:

pos 0 3 86

idx

211919121216

0 3 6 41 10 2 2 3 49 56 8 5 89611 11

Singleton levels store a single coordinate without any siblings in the idx array. Fig-

ure 3-2a shows the column dimension of a COO matrix encoded as a singleton level

with the following data structure:

idx 0 3 6 41 10 2 2 3 49 56 8 5 89611 11

O�set levels encode a single coordinate without any siblings, computed from the

parent coordinate with an o�set stored in the offset array. Figure 3-3b shows the

column dimension of a DIA matrix encoded as an o�set level with the following data

structure:

-1offset 0 3 6

36

Hashed levels store coordinates in a hash map (idx) of sizeW . Figure 3-1c shows a

hash map vector encoded as a hashed level with the following data structures:

0 5 63

W

idx

12

81312 14 -1 -1 -1 -1

Section 3.2 documents the precise semantics of the level formats above, and Figure 3-5

shows concretely how these level formats can be composed to construct all of the tensor

formats described in Chapter 2. We cast structured matrix formats, like BCSR, as formats

for higher-order tensors; the added dimensions expose more complex matrix structure

that require component values to be stored in non-lexicographic order with respect to the

row and column coordinates.

That only six level formats are needed to represent so many tensor formats re�ects

how some formats are, in essence, compositions of other formats. The mode-generic sparse

tensor format, for instance, can be viewed as a composition of the COO format with the

dense array format, where scalar component values in the COO format (represented by

the compressed and singleton level types) are replaced by dense arrays (represented by

the dense level type). Additionally, a format may use the same type of physical index

to encode multiple dimensions, thus enabling level format reuse. For example, the COO

format encodes each tensor dimension with one idx array that stores coordinates along

the dimension, so a COO tensor of any order n can be represented by a hierarchy with one

compressed level (which also stores the number of non-zeros) and n − 1 singleton levels.

The code generation algorithm described in Chapter 4 accesses and modi�es coordi-

nate hierarchy levels through an abstract interface, which exposes common patterns for

manipulating physical indices in tensor storage. This approach ensures that the algorithm

is not specialized—and thereby tied—to speci�c formats, which makes the compiler more

extensible and maintainable since adding support for more formats does not require whole-

sale changes to the code generation mechanism. The abstract interface to a coordinate

hierarchy level consists of level capabilities and properties. Level capabilities, which are

described in more detail in Section 3.2 and Section 3.4, instruct the compiler how to cor-

rectly index into or iterate over coordinates encoded by a level and how to add coordinates

37

Dense array
Dense

Sparse vector
CompressedJ J

Hash map
HashedJ

(a) Vector storage formats

Dense array
Dense

Dense

COO
Compressed (¬U)

Singleton

CSC
Dense

Compressed

DCSR
Compressed

Compressed

DIA
Dense

Range

Offset

BCSR

I

J

I

J

J

I

I

J

I

J

CSR
Dense

Compressed

ELL
Dense

Dense

Singleton

CSB
Dense

Dense

Compressed (¬O,¬U)

Singleton (¬O)

I

J

I

J

Iouter

Jouter

Iinner

Jinner

Dense

Compressed

Dense

Dense

Iouter

Jouter

Iinner

Jinner

(b) Matrix storage formats

COO
Compressed (¬U)

Singleton (¬U)

Singleton

CSF
Compressed

Compressed

Compressed

I

J

K

I

J

K

Mode-generic sparse
Compressed (¬U)

Singleton

Dense

I

J

K

(c) Tensor storage formats

Figure 3-5: Common variants of tensor formats described in Chapter 2, represented as
hierarchical compositions of per-dimension level formats. We cast structured matrix
formats as higher-order tensor formats. The label beside a level identi�es the tensor
dimension it represents. Unless otherwise stated, all levels other than hashed levels are
assumed to ordered and unique (see Section 3.3); hashed levels are assumed to be unordered
and unique. (¬O) denotes an unordered level and (¬U) denotes a non-unique level.

38

to a level. Properties of a level, which are described in Section 3.3, let the compiler emit

optimized code that exploits tensor attributes to increase computational performance.

3.2 Level Capabilities

Every coordinate hierarchy level must provide a set of capabilities that can be used to

access or modify its coordinates. Each capability is de�ned in terms of level functions that a

level must implement in order to support the capability, and which provide an abstraction

for manipulating physical indices in tensor storage in a format-agnostic manner.

For instance, column dimensions in CSR matrices are represented by compressed

levels (Figure 3-5), which provide the coordinate position iteration capability (Table 3.1).

As Table 3.1 also shows, the coordinate position iteration capability is de�ned by two level

functions: pos_iter and pos_access. Thus, to access the column coordinates highlighted

in dark gray in Figure 3-2b, one can �rst call pos_iter with the position of row coordinate

(3) as input to identify the positions of the column coordinates, and then call pos_access

with each position as input to determine the column coordinate values. Under the hood,

pos_iter indexes the pos array to locate the segment in the idx array that stores the

column coordinates, while pos_access retrieves each of the column coordinates from idx.

These level functions describe exactly how CSR indices can be e�ciently accessed while

e�ectively hiding details such as the existence of the pos and idx arrays from the caller.

We de�ne similar level functions for each of the �ve other types of hierarchy levels

described in the previous section; Table 3.1 lists the access capabilities that are de�ned

for each level type along with de�nitions of the corresponding level functions. Our code

generation algorithm emits code that calls level functions in order to access physical

indices, which ensures that the algorithm is not tied to any speci�c type of physical index.

The rest of this section describes three di�erent access capabilities: coordinate value

iteration, coordinate position iteration, and locate. These capabilities generalize the various

recurring patterns we saw in Section 2.2 for accessing physical indices in tensor storage.

Every coordinate hierarchy level must provide coordinate value iteration or coordinate

39

Table 3.1: Access capabilities that are supported by each of the six level types listed
in Section 3.1, and the de�nitions of their corresponding level functions.

Level Type Supported Capability Level Function De�nitions

Dense
Coord. value iteration

coord_iter(i1, . . ., ik−1):
return <0, Nk>

coord_access(pk−1, i1, . . ., ik):
return <pk−1 * Nk + ik, true>

Locate locate(pk−1, i1, . . ., ik):
return <pk−1 * Nk + ik, true>

Range Coord. value iteration

coord_iter(i1, . . ., ik−1):
return <max(0, -offset[ik−1]),

min(Nk, Mk - offset[ik−1])>

coord_access(pk−1, i1, . . ., ik):
return <pk−1 * Nk + ik, true>

Compressed Coord. position iteration
pos_iter(pk−1):
return <pos[pk−1], pos[pk−1 + 1]>

pos_access(pk, i1, . . ., ik−1):
return <idx[pk], true>

Singleton Coord. position iteration
pos_iter(pk−1):
return <pk−1, pk−1 + 1>

pos_access(pk, i1, . . ., ik−1):
return <idx[pk], true>

O�set Coord. position iteration
pos_iter(pk−1):
return <pk−1, pk−1 + 1>

pos_access(pk, i1, . . ., ik−1):
return <ik−1 + offset[ik−2], true>

Hashed

Coord. position iteration
pos_iter(pk−1):
return <pk−1 * Wk, (pk−1 + 1) * Wk>

pos_access(pk, i1, . . ., ik−1):
return <idx[pk], idx[pk] != -1>

Locate

locate(pk−1, i1, . . ., ik):
int pk = ik % Wk + pk−1 * Wk
if (idx[pk] != ik && idx[pk] != -1) {
int end = pk
do {
pk = (pk + 1) % Wk + pk−1 * Wk

} while (idx[pk] != ik &&
idx[pk] != -1 && pk != end)

}
return <pk, idx[pk] == ik>

40

position iteration and can optionally provide the locate capability. Section 3.4 describes

assembly capabilities for modifying hierarchy levels.

Coordinate Value Iteration Capability The coordinate value iteration capability en-

ables iteration over a set of coordinates that are identi�ed by their values, generalizing the

method shown in Figure 2-4a for iterating a dense array. It is suited for physical indices

that succinctly encode the set of non-zero coordinates along a tensor dimension.

Coordinate value iteration is de�ned in terms of two level functions, one that returns an

iterator over coordinates along a tensor dimension (coord_iter) and one that accesses each

coordinate’s position within the corresponding coordinate hierarchy level (coord_access):

coord_iter(i1, . . ., ik−1) -> <ik_begin, ik_end>

coord_access(pk−1, i1, . . ., ik) -> <pk, found>

More precisely, given a list of ancestor coordinates (i1 . . . ik−1), the function coord_iter

returns the bounds of an iterator into potential coordinates (ik) that has those ancestors.

For each coordinate (ik), the function coord_access returns the position of a child of pk−1

that encodes (ik), or returns found as false if the coordinate does not actually exist. These

functions can be used to iterate tensor coordinates in the general case as follows:

ik_begin, ik_end = coord_iter(i1, ..., ik−1);

for (ik = ik_begin; ik < ik_end; ++ik) {

pk, found = coord_access(pk−1, i1, ..., ik);

if (found) {

// coordinates and values dominated by ik at position

// pk encode the subtensor B(i1, ..., ik , :, ..., :)
}

}

In practice, many level formats that provide the coordinate value iteration capability

(including dense and range level types) will always return found as true, in which case the

code above can be straightforwardly optimized by removing the conditional:

ik_begin, ik_end = coord_iter(i1, ..., ik−1);

for (ik = ik_begin; ik < ik_end; ++ik) {

41

pk, _ = coord_access(pk−1, i1, ..., ik);

// coordinates and values dominated by ik at position

// pk encode the subtensor B(i1, ..., ik , :, ..., :)
}

Coordinate Position Iteration Capability The coordinate position iteration capabil-

ity, on the other hand, enables iteration over a set of coordinates that are identi�ed by

their positions, generalizing the method shown in Figure 2-4b for iterating a sparse vector.

It is suited for physical indices that explicitly store coordinates or that encode coordinates

along one tensor dimension as a function of coordinates along other dimensions.

Coordinate position iteration is also de�ned in terms of two level functions, one that

returns an iterator over positions within a coordinate hierarchy level (pos_iter) and one

that accesses the coordinate at each position (pos_access):

pos_iter(pk−1) -> <pk_begin, pk_end>

pos_access(pk, i1, . . ., ik−1) -> <ik, found>

More precisely, given a coordinate at position pk−1, the function pos_iter returns the

bounds of an iterator into potential positions pk with pk−1 as the parent. For each position

pk , the function pos_access returns the coordinate encoded at that position, or returns

found as false if the coordinate either does not exist or is not actually a child of pk−1. These

functions can be used to iterate tensor coordinates in the general case as follows:

pk_begin, pk_end = pos_iter(pk−1);

for (pk = pk_begin; pk < pk_end; ++pk) {

ik, found = pos_access(pk, i1, ..., ik−1);

if (found) {

// coordinates and values dominated by ik at position

// pk encode the subtensor B(i1, ..., ik , :, ..., :)
}

}

This code is similar in structure to the one shown previously for coordinate value itera-

tion, but with the roles of ik and pk reversed. And, as is the case with coordinate value

42

iteration, many level formats that provide the coordinate position iteration capability (e.g.,

compressed level types) will in practice always return found as true, in which case the

code above can be optimized by removing the conditional.

Locate Capability The locate capability provides random access into a coordinate

hierarchy level through function that computes the position of a coordinate:

locate(pk−1, i1, . . ., ik) -> <pk, found>

The locate function has similar semantics as coord_access. Given a coordinate (ik−1)—

with ancestor coordinates (i1 . . . ik−2)—at positionpk−1 in the previous level, locate queries

whether the coordinate at pk−1 has a child that encodes the coordinate (ik). If so, then

locate returns the position of that child and returns found as true; otherwise it returns

found as false. Traversing a single path in a coordinate hierarchy—in other words, accessing

a single tensor component—can be accomplished by successively calling locate at every

level, assuming they all support the locate capability.

The locate capability is useful in tensor contraction kernels that multiply tensors. As

we will see in Chapter 4, if at least one of the operands supports the locate capability, then

the generated code need only iterate over the operands that do not support the locate

capability; values from the operands that do support the capability can be gathered with

the locate function, which our technique assumes will execute in constant time. Thus,

the cost of the computation can be reduced.

3.3 Level Properties

In addition to capabilities, every coordinate hierarchy level may possess one or more

of �ve properties: full, ordered, unique, branchless, and compact. These describe various

characteristics of levels such as whether coordinates are arranged in order or whether

each coordinate has no duplicate; we explain each property in detail below. Properties

of a coordinate hierarchy level re�ect invariants that are explicitly enforced or implicitly

assumed by the underlying physical index. A level that corresponds to the column dimen-

43

sion of a CSR matrix, for instance, is both ordered and unique (Figure 3-5), which re�ects

how the standard CSR format stores every non-zero coordinate just once and stores the

components in memory in increasing order of the coordinate values.

Our code generation technique relies on these properties to emit code that is optimized

for its inputs. For example, knowing that an input tensor format encodes only unique

coordinates enables our algorithm to avoid emitting code to aggregate duplicate values,

resulting in more e�cient code.

Full A level is full if every collection of coordinates that share the same ancestor coordi-

nates contains all possible coordinates along the dimension corresponding to that level.

For instance, a level that represents a dense array vector (Figure 3-1a) necessarily encodes

every coordinate and is thus full. On the other hand, a level that represents a sparse vector

(Figure 3-1b) is not full as sparse vectors only store non-zero coordinates.

Unique A level is unique if every collection of coordinates that share the same ancestor

coordinates contains no duplicate coordinates. For instance, a level that represents the

row dimension of a CSR matrix (Figure 3-2b) necessarily encodes every coordinate just

once and is thus unique. By contrast, a level that represents the row dimension of a COO

matrix (Figure 3-2a) can store the same coordinate more than once and is thus not unique.

Ordered A level is ordered if coordinates sharing the same ancestor coordinates are

arranged in increasing value, coordinates with di�erent ancestor coordinates are ordered

lexicographically by their ancestor coordinates, and duplicates are ordered by their parents’

positions. For example, a level that represents a standard sparse vector stores coordinates

in increasing order and is thus ordered. By contrast, a level that represents a hash map

vector (Figure 3-1c) is not ordered since the underlying hash table stores coordinates in

hash order, which does not necessarily match the order of the coordinate values.

Branchless A level is branchless if no coordinate has a sibling and every coordinate in

the previous level has a child. For example, the coordinate hierarchy for a COO matrix

consists strictly of chains of coordinates, making the lower level branchless. On the other

44

Table 3.2: Properties of each of the six level types listed in Section 3.1. X indicates that
a particular level type always possesses a particular property, while (X) indicates that a
level type can be con�gured to either possess or not possess a particular property.

Level Type Full Unique Ordered Branchless Compact

Dense X (X) (X) X
Range (X) (X)
Compressed (X) (X) (X) X
Singleton (X) (X) (X) X X
O�set (X) (X) X
Hashed (X)

hand, a level that represents the column dimension of a CSR matrix can have multiple

coordinates that share the same parent and is thus not branchless.

Compact A level is compact if no two coordinates are separated by a position that does

not encode a coordinate (i.e., a node with no number). For instance, a level that represents

a sparse vector encodes coordinates in a single contiguous range of positions and is thus

compact. By contrast, a level representing a hash map vector can have unlabeled positions

that correspond to empty hash table buckets and is thus not compact.

Table 3.2 describes properties for each of the six level types listed in Section 3.1. In

certain cases, denoted by (X), a coordinate hierarchy level may be optionally con�gured

to possess a particular property based on the application. Con�gurable properties re�ect

invariants that are not tied to how a physical index encodes coordinates; for instance, the

idx array in compressed levels typically assume coordinates are stored in order when

used in common tensor formats like CSR, but the same data structure can just as easily

store coordinates out of order. By contrast, non-con�gurable properties correspond to

invariants that arise directly from how a physical index encodes coordinates; for example,

the hash table that underlies hashed levels has to store coordinates in hash order in order to

provide constant-time random access, thereby making it impossible for a hashed level to be

ordered in practical use cases. Figure 3-5 shows exactly how level types with con�gurable

properties can be con�gured to represent concrete tensor formats.

45

3.4 Output Assembly

The capabilities described in Section 3.2 all relate to accessing coordinate hierarchies

that have already been constructed. A level in a coordinate hierarchy may also provide

the append capability or the insert capability, which enable new coordinates and edges

to be added to the level. These capabilities provide an abstraction for assembling, in a

format-agnostic manner, physical indices that store the result of a computation.

Insert Capability The insert capability permits coordinates to be inserted anywhere

into a coordinate hierarchy level and is de�ned in terms of four level functions:

insert_coord(pk, i1, . . ., ik) -> void

init_insert(pk−1_max, pk_max) -> void

finalize_insert(pk−1_max, pk_max) -> void

nonzeros(pk−1_max) -> pk_max

New coordinates can be inserted into an output level by calling insert_coord, which

intuitively adds a coordinate at position pk that encodes the subtensor A(i1, ..., ik , :, ..., :),

with positions given by the locate function as inputs. This requires the output level to

provide the locate capability but allows result coordinates to be inserted in any order.

init_insert de�nes how the data structures that encode an output level should be

initialized before starting an actual computation, while finalize_insert de�nes any post-

processing needed after the result has been fully computed in order to �nish assembling

the aforementioned data structures. nonzeros returns an upper bound on the positions of

coordinates in an output level. All three functions take, as each input argument pi_max, the

value returned by nonzeros for the i-th level if it is assembled with the insert capability

or the number of coordinates that have been appended to the i-th level if it is assembled

with the append capability, which we describe next.

Append Capability The append capability permits coordinates to be appended to the

end of a coordinate hierarchy level and is also de�ned in terms of four level functions:

46

append_coord(pk, i1, . . ., ik) -> void

append_edges(pk−1, pk_begin, pk_end) -> void

init_append(pk−1_max, pk_max) -> void

finalize_append(pk−1_max, pk_max) -> void

New coordinates can be appended to an output level by calling append_coord, which like

insert_coord adds a coordinate at position pk that encodes the subtensorA(i1, ..., ik , :, ..., :

), with successively incremented values of pk as inputs. Newly appended coordinates can

then be attached to the rest of the coordinate hierarchy by calling append_edges, which

inserts edges that connect all coordinates positioned between pk_begin (inclusive) and

pk_end (exclusive) to the coordinate at position pk−1 in the previous level. Unlike with the

insert capability though, making use of the append capability requires result coordinates

to be enumerated and appended in order.

init_append and finalize_append serve identical purposes as init_insert and

finalize_insert respectively and take the same input arguments.

Table 3.3 lists the assembly capabilities provided by four level types that support assembly

along with valid de�nitions of the corresponding level functions. Following the semantics

described above, we can, for example, assemble a CSR matrix A from another DCSR matrix

B by calling the appropriate level functions as demonstrated below:

1 pA2 = 0;

2 A1_init_insert(1, A1_nonzeros(1));

3 A2_init_append(A1_nonzeros(1), pA2);

4 for (int pB1 = B1_pos[0]; pB1 < B1_pos[1]; ++pB1) {

5 int i = B1_idx[pB1];

6 int pA1 = i;

7 int pA2_begin = pA2;

8 for (int pB2 = B2_pos[pB1]; pB2 < B2_pos[pB1 + 1]; ++pB2) {

9 int j = B2_idx[pB2];

10 A2_append_coord(pA2++, i, j);

11 }

12 A2_append_edges(pA1, pA2_begin, pA2);

13 A1_insert_coord(pA1, i);

47

Table 3.3: Assembly capabilities provided by four of the level types listed in Section 3.1
that support assembly, and de�nitions of their corresponding level functions.

Level Type Supported Level Function De�nitionsCapabilities

Dense Insert

insert_coord(pk, i1, . . ., ik):
// do nothing

init_insert(pk−1_max, pk_max):
// do nothing

finalize_insert(pk−1_max, pk_max):
// do nothing

nonzeros(pk−1_max):
return pk−1_max * Nk

Compressed Append

append_coord(pk, i1, . . ., ik):
idx[pk] = ik

append_edges(pk−1, pk_begin, pk_end):
pos[pk−1 + 1] = pk_end - pk_begin

init_append(pk−1_max, pk_max):
for (int pk−1 = 0; pk−1 <= pk−1_max; ++pk−1) {
pos[pk−1] = 0

}

finalize_append(pk−1_max, pk_max):
int cumsum = pos[0]
for (int pk−1 = 1; pk−1 <= pk−1_max; ++pk−1) {
cumsum += pos[pk−1]
pos[pk−1] = cumsum

}

Singleton Append

append_coord(pk, i1, . . ., ik):
idx[pk] = ik

append_edges(pk−1, pk_begin, pk_end):
// do nothing

init_append(pk−1_max, pk_max):
// do nothing

finalize_append(pk−1_max, pk_max):
// do nothing

Hashed Insert

insert_coord(pk, i1, . . ., ik):
idx[pk] = ik

init_insert(pk−1_max, pk_max):
for (int pk = 0; pk < pk_max; ++pk) {
idx[pk] = -1

}

finalize_insert(pk−1_max, pk_max):
// do nothing

nonzeros(pk−1_max):
return pk−1_max * Wk

48

14 }

15 A2_finalize_append(A1_nonzeros(1), pA2);

16 A1_finalize_insert(1, A1_nonzeros(1));

where level functions pre�xed with A1_ and A2_ refer to the versions de�ned for dense and

compressed levels respectively (since the CSR matrix hierarchy consists of a dense level and

a compressed level). In this example, the calls to A2_append_coord assemble the output idx

array while the calls to A2_init_append, A2_append_edges, and A2_finalize_append

assemble the output pos array as required.

Some level types permit multiple ways of implementing an assembly capability. Below,

for instance, is another way to implement the append capability for a compressed level,

which is also valid as long as the preceding level in the hierarchy also has append capability:

append_coord(pk, i1, . . ., ik):

idx[pk] = ik

append_edges(pk−1, pk_begin, pk_end):

pos[pk−1 + 1] = pk_end

init_append(pk−1_max, pk_max):

pos[0] = 0

finalize_append(pk−1_max, pk_max):

// do nothing

This alternative de�nition is more restrictive than the one presented in Table 3.3—it cannot

be used to assemble a CSR matrix, as an example—but can provide better performance as

it fully assembles the pos array in one shot and does not require any post-processing pass.

Again, by hiding these implementation choices behind an abstract interface, we make it

possible to develop a generic code generation algorithm that naturally supports all these

alternatives by simply emitting code like the one shown previously.

49

50

Chapter 4

Code Generation

In this chapter, we describe a code generation technique that emits e�cient code to

compute any compound tensor algebra expression, where the operands can be stored in

any combination of tensor formats assembled from level formats described in Chapter 3.

These include, but are not limited to, the tensor storage formats we examined in Chapter 2.

Our algorithm extends the code generation technique Kjolstad et al. proposed in [34] to

emit code that e�ciently iterates and merges coordinate hierarchies, and which can then be

specialized to e�ciently compute with speci�c tensor formats without requiring the code

generator to directly reason about those formats. This separation between tensor formats

and the code generation algorithm, which the coordinate hierarchy abstraction enforces,

limits the complexity of the algorithm and ensures it can be reasonably maintained and

potentially extended to support even more formats.

4.1 Iteration Graphs and Merge Lattices

Our code generation technique takes as input a tensor algebra expression in a variant

of the tensor index notation developed by Ricci-Curbastro and Levi-Civita [53], which

describes how each component in the output of a tensor computation can be computed in

terms of components in the operands. For example, matrix-vector multiplication can be

51

expressed in tensor index notation as

yi =
∑
j

Aijxj ,

which makes explicit that every i-th row in the result is computed as the inner product of

the corresponding row in the input matrix A with input vector j . Similarly, the addition of

two matrices can be expressed as

Aij = Bij +Cij .

Computing a tensor algebra expression in this form requires iterating over the merged

iteration space of the operands dimension by dimension. For instance, e�cient code that

adds two sparse matrices must logically iterate only rows that have non-zeros in either

matrix and, for each row, iterate only the columns that are non-zero in either matrix. How

exactly tensor dimensions should be merged depends on the computation. Multiplication

requires iterating over the intersection of the operands as the result is non-zero only if

both operands are non-zero. Addition, by contrast, requires iterating over the union of the

operands as the result is non-zero if at least one of the operands is non-zero.

The proper order in which to iterate over dimensions in the merged iteration space

can be determined with the aid of an iteration graph, which is an intermediate representa-

tion Kjolstad et al. proposed that describes how to iterate over non-zero inputs of a tensor

algebra expression [34]. More formally, the iteration graph for a tensor algebra expression

consists of a set of index variables that appear in the expression and a set of directed tensor

paths that represent accesses into input and output tensors. Each tensor path connects

index variables that are used in the corresponding tensor access and is ordered based on the

order of index variables in the access expression as well as the order in which dimensions

of the accessed tensor are stored. Determining the order in which dimensions should be

merged to e�ciently compute an expression then reduces to ordering index variables into

a forest such that every tensor path edge goes from an index variable that is higher up to

52

B
B1

B2

A
A1

A2 C2

C
C1

i

j
(a) Iteration graph for CSR matrix addition

B
B1

B2

A
A1

A2 C2

C
C1

j

i
(b) Iteration graph for CSC matrix addition

Figure 4-1: Iteration graphs for matrix addition Aij = Bij +Cij , where the input and output
matrices are (a) all stored in the CSR format or (b) all stored in the CSC format.

an index variable that is lower down. Such a forest ordering, by construction, must satisfy

all constraints on e�ciently accessing tensor operands that are imposed by their formats.

Figure 4-1 shows examples of iteration graphs, arranged in their forest ordering, for

the addition of two CSR matrices and the addition of two CSC matrices. As we saw

in Figure 3-2b, a CSR matrix encodes its row dimension before its column dimension in the

corresponding coordinate hierarchy (which re�ects how row coordinates are used to index

into the pos array), so all tensor paths in Figure 4-1a have edges that point from index

variable i to j. Thus, from the iteration graph’s forest ordering, we can determine that

e�ciently computing CSR matrix addition requires iterating the row dimensions before

the column dimensions. By contrast, as we saw in Figure 3-2c, a CSC matrix encodes its

column dimension before its row dimension (which re�ects how column coordinates are

used to index into the pos array instead), so all tensor paths in Figure 4-1b have edges that

point from j to i . Thus, in this case, we can determine from the iteration graph’s forest

ordering that e�ciently computing CSC matrix addition requires iterating the column

dimensions before the row dimensions.

For each dimension in the merged iteration space, its corresponding merge lattice–

another intermediate representation proposed by Kjolstad et al.—describes what loops are

needed to compute an arbitrary combination of intersection and union merges involving

the input tensor dimensions. Each point in the ordered lattice encodes a set of tensor

dimensions containing non-zero coordinates that needs to be merged with one loop, while

lattice points that are dominated by the given lattice point encode di�erent cases that

53

;

Aij = Bij + Cij

Bi ^ Ci

CiBi

(a) Merge lattice for i

Cj

;

Bj ^ Cj

Aij = Bij + Cij

CjBj

Bj

Aij = Cij Aij = Bij

BjCj

(b) Merge lattice for j

Figure 4-2: Merge lattices for CSR matrix addition Aij = Bij +Cij .

the aforementioned loop must consider when computing the merge. Every path from

the top lattice point to the bottom lattice point represents a sequence of loops that might

have to be executed at runtime in order to fully merge the input dimensions. Kjolstad

et al. [34] gives a bottom-up recursive algorithm that constructs a merge lattice for any

index expression and any given index variable.

Figure 4-2 shows examples of merge lattices that describe the addition of two CSR

matrices. The merge lattice describing how to merge the column dimensions, shown

in Figure 4-2b, contains three lattice points that yield three separate loops. The �rst loop

co-iterates over the column dimensions of input matrices B and C and merges the two

while they both contain unprocessed non-zeros, while the remaining two loops iterate

over remaining values of B or C after at least one input has been exhausted. The merge

lattice for the row dimensions, shown in Figure 4-2a, contains just one lattice point as both

input dimensions are dense and thus must share the same iteration space.

4.2 Merge Lattice Optimizations

Kjolstad et al. proposed a set of optimizations that can be applied to merge lattices in order

to obtain simpli�ed lattices like the one shown in Figure 4-2a for matrix addition and thus

yield more optimized code [34]. All of those optimizations were formulated with respect

to dimensions stored in what we classify as dense and compressed level formats, though it

is straightforward to generalize those optimizations to other level types that our technique

supports. In particular, we can optimize merging of any number of dimensions encoded as

54

full coordinate hierarchy levels (as opposed to only dense dimensions) by iterating over

just one of the full dimensions, as long as the others all support the locate capability. We

can also safely remove all lattice points below the top point that do not merge every full

dimension, as full dimensions are supersets of any sparse iteration space.

4.3 Merging Coordinate Hierarchy Levels

Merging tensor dimensions is equivalent to merging the corresponding coordinate hi-

erarchy levels that represent those dimensions. The most e�cient method for merging

coordinate hierarchy levels depends on the properties of the levels and the capabilities

that the levels support. Consider, for instance, the component-wise multiplication of two

vectors x and y, which requires iterating over the intersection of the two coordinate hier-

archy levels that encode their non-zero coordinates. Figure 4-3 shows optimal strategies

for computing the intersection merge depending on whether the input levels are ordered

or unique and whether they support the locate capability; these are the same strategies

our code generation algorithm selects. The rest of this section focuses on standard ver-

sions of two high-level techniques, which require input levels with speci�c properties or

capabilities and are indicated by green and red/blue squares without circles or diamonds

in Figure 4-3. Section 4.4 examines how these high-level techniques can be applied to

merge any coordinate hierarchy levels regardless of their properties and capabilities.

If both inputs support iterating unique coordinates in order but do not support the

locate capability, we can co-iterate over the two inputs (lines 3–14) and compute a new

output component whenever we encounter non-zero components in both inputs that share

the same coordinate (7–11):

1 int px = x_pos[0];

2 int py = y_pos[0];

3 while (px < x_pos[1] && py < y_pos[1]) {

4 int ix = x_idx[px];

5 int iy = y_idx[px];

6 int i = min(ix, iy);

7 if (ix == i && iy == i) {

55

Not OrderedNot
Ordered Ordered

Locate not supportedLocate supported

U
ni

qu
e

N
on

U
ni

qu
e

U
ni

qu
e

x xx

U
ni

qu
e

N
on

U
ni

qu
e

U
ni

qu
e

N
on

U
ni

qu
e

U
ni

qu
e

N
on

U
ni

qu
e x x

y
y y y

x

y y
y

x xx

U
ni

qu
e

xN
ot

O
rd

er
ed

O
rd

er
ed

x
x

x
xx

U
ni

qu
e

N
on

U
ni

qu
e

U
ni

qu
e

N
ot

O
rd

er
ed

O
rd

er
ed

x
x

y
y

Lo
ca

te
 n

ot
 s

up
po

rte
d

N
on

U
ni

qu
e

x

x

y

x

x

x

x

y

x
x xx

y y
y y

y

y
y

y
y y

y y
y

y

y

y

x
x x

x
y y y

x

x
x x

y
x

y y
y

x

y
y y

x y Aggregate duplicates in x or y
x y Sort x or y

Co-iterate over both x and y
Iterate over x, locate y
Iterate over y, locate x

y

xLe
ve

l
C

ap
ab

ilit
ie

s/
P

ro
pe

rti
es

O
ut

pu
t

N
ot

 O
rd

er
ed

Ordered

Lo
ca

te
 s

up
po

rte
d

O
ut

pu
t

O
rd

er
ed

Figure 4-3: The optimal strategies for computing the intersection merge of two vectors x
and y depending on whether they provide locate capability and whether they are ordered
and unique. y is assumed to not be a strict subset of x .

56

8 double x_val = x_vals[px];

9 double y_val = y_vals[py];

10 z_vals[i] = x_val * y_val;

11 }

12 if (ix == i) ++px;

13 if (iy == i) ++py;

14 }

This technique generalizes the two-way merge algorithm used in merge sort [36, Chapter

5.2.4] but still requires both inputs to be ordered and unique.

However, if one of the inputs, y, supports the locate capability (e.g., if it is dense), then

we can instead iterate the non-zero coordinates in x (lines 1–2) and, for each coordinate,

locate the corresponding coordinate in y (line 4):

1 for (int px = x_pos[0]; px < x_pos[1]; ++px) {

2 int i = x_idx[px];

3 double x_val = x_vals[px];

4 double y_val = y_vals[i];

5 z_vals[i] = x_val * y_val;

6 }

This alternative technique (iterate-and-locate) reduces the complexity of the merge from

O(nnz(x) + nnz(y)) to O(nnz(x)), which is a signi�cant improvement if y has many more

non-zeros than x (e.g., if y is dense). Moreover, this technique does not require the coordi-

nates in y to be stored in order. In fact, we do not even need to enumerate the coordinates

in x in order, as long as there are no duplicates and we do not need to enumerate output

components in order (e.g., if the output supports the insert capability). This alternative

technique is thus ideal for merging unordered dimensions.

We can generalize and combine the two techniques described above to, with the help of

merge lattices, compute arbitrarily complex merges involving unions and intersections of

any number of tensor dimensions. If a merge lattice contains multiple lattice points, then

each lattice point can be converted to a loop that co-iterates over all the corresponding

hierarchy levels that need to be merged. However, if a merge lattice contains just one

lattice point (excluding the bottom), then it can be converted to a loop that co-iterates over

57

only the hierarchy levels that need to be merged but do not support the locate capability,

and which locates into the other levels that also need to be merged.

4.4 Iterator Conversion

As we saw in the previous section, e�cient algorithms to merge coordinate hierarchy

levels exist when they are all ordered and unique (i.e., co-iteration), or when the merge

operation is an intersection and all of the unordered levels support the locate capability

(i.e., iterate-and-locate). Iterator conversion describes a set of transformations that convert

iterators over unordered or non-unique hierarchy levels without the locate capability to new

iterators with the required properties on the �y, so that the aforementioned algorithms can

be used where they otherwise could not. Here we describe two types of iterator conversion,

which can be arbitrarily composed as needed and which are su�cient to support merging

any hierarchy levels using the two high-level techniques described in Section 4.3.

Deduplication The existence of duplicate coordinates poses a complication for merging

as it results in repeated visits of the same points in the iteration space. Deduplication, an

example of which is shown below, removes duplicates from an iterator over an ordered

but non-unique coordinate hierarchy level using a loop that scans ahead in the level (lines

6–9) and aggregates duplicate coordinates (line 7).

1 int p = pos[0];

2 while (p < pos[1]) {

3 int i = idx[p];

4 double v = vals[p];

5 int p_segend = p + 1;

6 while (p_segend < pos[1] && idx[p_segend] == i) {

7 v += vals[p_segend];

8 ++p_segend;

9 }

10 printf("x(%d) = %f\n", i, v);

11 p = p_segend;

12 }

58

Thus, for the purpose of merging, the emitted code can treat the resultant iterator as one

that does not enumerate duplicates. Figure 4-3 identi�es, with black circles, the cases

where deduplication needs to be applied to one or both operands.

If the non-unique level is the bottom-most level in a coordinate hierarchy, as is the case

in the previous example, then values at the duplicate coordinates are aggregated using

a summation reduction. Otherwise, the emitted code needs to aggregate all children of

the duplicate coordinates in such a way that only a single iterator is needed to iterate

over them. In the general case, as shown in the example below, this requires assembling a

scratch array list that stores all the child coordinates (lines 7–16) and that can be iterated

with a single iterator (lines 18–23).

1 typedef struct { int i; int p; } coord;

2 coord coords[];

3
4 int p1 = pos1[0];

5 while (p1 < pos1[1]) {

6 int i = idx1[p];

7 int nj = 0;

8 int p1_segend = p1 + 1;

9 while (p1_segend < pos1[1] && idx1[p1_segend] == i) {

10 for (int p2 = pos2[p1]; p2 < pos2[p1 + 1]; ++p2, ++nj) {

11 coords[nj].p = p2;

12 coords[nj].i = idx2[p2];

13 }

14 ++p1_segend;

15 }

16 sort(coords, nj);

17
18 for (int n = 0; n < nj; ++n) {

19 int p2 = coords[n].p;

20 int j = coords[n].i;

21 double v = vals[p2];

22 printf("A(%d, %d) = %f\n", i, j, v);

23 }

24 p1 = p_segend;

25 }

59

20 1

2

3

2

5

2

76 8 9

(a) Each coordinate position iterator iterates
over the children of a duplicate coordinate.

20 1

2

3

2

5

2

76 8 9

(b) Chained iterator iterates over all children
of all duplicate coordinates.

Figure 4-4: Iterator chaining chains together coordinate position iterators over distinct col-
lections of children of duplicate coordinates (a) into a single iterator over all the children (b)
without needing a scratch array. Each arrow represents an iterator with its starting and
ending bounds indicated by green and red edges respectively.

However, if the child coordinates are stored in a level that supports coordinate position

iteration and if both that level and the non-unique level before it are ordered and compact,

then instead the emitted code can chain together iterators that each iterate over the children

of one duplicate coordinate (Figure 4-4a) into a single iterator that iterates over all children

of all the duplicate coordinates (Figure 4-4b). The starting bound of the resultant iterator

would simply be the starting bound of the iterator over the �rst collection of children, while

the ending bound of the resultant iterator would be the ending bound of the iterator over

the last collection of children. The resultant chained iterator provides the same interface

as regular coordinate position iterators and can thus participate in merging in the same

way as any other iterator without needing to assemble a scratch array �rst. The code

below demonstrates this more concretely; p2 represents the chained iterator over all child

coordinates of i , with its starting and ending bounds computed from the �rst position that

encodes i (p1) and the last position that encodes i (p1_segend) respectively (line 12).

1 struct { int i; int p; } coord;

2 coord coords[];

3
4 int p1 = pos1[0];

5 while (p1 < pos1[1]) {

6 int i = idx1[p];

7 int p1_segend = p1 + 1;

8 while (p1_segend < pos1[1] && idx1[p1_segend] == i) {

9 ++p1_segend;

10 }

60

11
12 for (int p2 = pos2[p1]; p2 < pos2[p1_segend]; ++p2) {

13 int j = idx2[p2];

14 double v = vals[p2];

15 printf("A(%d, %d) = %f\n", i, j, v);

16 }

17 p1 = p_segend;

18 }

Reordering An essential precondition for co-iterating hierarchy levels is that the input

coordinates can be enumerated in order. Reordering, an example of which is shown below,

assembles a scratch array list that stores an ordered copy of an unordered coordinate

hierarchy level (lines 4–9) and replaces the iterator over the unordered level with an

iterator over the ordered copy (lines 11–13).

1 typedef struct { int i; int p; } coord;

2 coord coords[];

3
4 int nnz = 0;

5 for (int p = pos[0]; p < pos[1]; ++p, ++nnz) {

6 coords[nnz].p = p;

7 coords[nnz].i = idx[p];

8 }

9 sort(coords, nnz);

10
11 for (int n = 0; n < nnz; ++n) {

12 int p = coords[n].p;

13 int i = coords[n].i;

14 double v = vals[p];

15 printf("x(%d) = %f\n", i, v);

16 }

Thus, the code generation algorithm can emit code that merges an unordered level by

co-iterating over the ordered copy. Figure 4-3 identi�es, with black diamonds, the cases

where reordering needs to be applied to one or both operands.

61

4.5 Code Generation Algorithm

Figure 4-5 shows our code generation algorithm, which incorporates all of the concepts

we presented in the previous sections. Each part of the algorithm is labeled from 1 to 11;

throughout the discussion of the algorithm in the rest of this section, we will identify

relevant parts using these labels.

The algorithm emits code that iterates over the proper intersections and unions of

the input tensors by calling relevant access capability level functions, computes values

at points in the merged iteration space, and assembles an output tensor by calling the

relevant assembly capability level functions. The generated code is then specialized to

work with speci�c tensor formats by inlining all the level function calls. This approach

limits the complexity of the code generation mechanism, as it only needs to reason about

iterating and merging coordinate hierarchy levels with a �nite set of distinct capabilities

as opposed to unbounded combinations of speci�c types of physical indices. The result is

an algorithm that supports disparate tensor formats and that does not need modi�cation

to add support for more level types and tensor formats.

The algorithm recursively calls itself on index variables in the tensor algebra expres-

sion to be computed, in the order given by the corresponding iteration graph. At each

recursion level, the algorithm generates code for one index variable iv in the input index

expression. The algorithm begins by emitting code that calls the appropriate coordinate

value iteration or coordinate position iteration level functions to initialize iterators into

coordinate hierarchy levels representing input tensor dimensions, and that performs any

necessary iterator conversion described in Section 4.4 (1, 2).

The algorithm also constructs a merge lattice at every recursion level for the corre-

sponding input expression and index variable iv . For every point Lp in this merge lattice,

the algorithm emits a loop that merges coordinate hierarchy levels representing input

tensor dimensions associated with the lattice point (3). Within each loop, the generated

code dereferences iterators over the coordinate hierarchy levels to be merged (4, 6, 9),

making sure to not process coordinates that are not actually encoded in the levels (5). Each

merged coordinate is then computed (7) and, if the merge is an intersection, used to index

62

into levels that can be accessed with the locate capability (8). At the very end, the algorithm

emits appropriate code to advance the iterators that referenced merged coordinates (11).

The algorithm also generates code to compute output values and to assemble output

indices (10). The latter involves emitting code to keep track of where to insert or append new

result coordinates in the output, as well as emitting code that calls the appropriate assembly

level functions to assemble physical indices for the output (emit-index-assembly). The

algorithm emits specialized compute and assembly code for each point in the merge

lattice that is dominated by the loop lattice point Lp , which handles the case where the

corresponding subset of input dimensions contains non-zeros at the same coordinate.

Figure 4-6 and Figure 4-7 shows examples of code that our technique generates for

adding a CSR matrix to a sorted COO matrix with no empty row. The algorithm in Figure 4-

5 emits exactly what is shown in Figure 4-6 with only the calls to level functions, which

frees the algorithm from needing to reason about merging physical indices like the idx

arrays in the input matrices. Work that is required to specialize the emitted code to actually

merge physical indices associated with the CSR and COO formats (as shown in Figure 4-7)

is o�oaded entirely to the inlining pass, which can do this completely mechanically. More

examples of code that our technique generates are shown in Appendix A.

Fusing Iterators By default, at every recursion level, the algorithm emits loops that

iterate over a single coordinate hierarchy level of each input tensor. However, an opti-

mization that improves performance when computing with formats such as COO involves

emitting code that simultaneously iterates over multiple coordinate hierarchy levels. The

algorithm implements this optimization by fusing iterators over branchless levels with

iterators over their preceding levels, as long as the associated merges are intersections

and other merged levels can be accessed with the locate capability. The algorithm thus

avoids emitting loops for levels that are accessed by fused iterators (3), which eliminates

unnecessary branching costs. For some computations, this optimization can transform

the generated kernel from a gather code that enumerates each output non-zero once to a

scatter code that accumulates into non-zero outputs, in which case the algorithm ensures

that the output coordinate hierarchy levels can be accessed with the locate capability.

63

code-gen(index-expr, iv):
 let L = merge-lattice(index-expr, iv)

 for Dj in coord-value-iteration-dims(L):
 emit "int ivDj, int Dj_end = coord_iter_Dj(ivD1,...,ivDj-1);"
 for Dj in coord-position-iteration-dims(L):
 if Dj-1 is unique:
 emit "int pDj, int Dj_end = pos_iter_Dj(pDj-1);"
 else:
 emit "int pDj, _ = pos_iter_Dj(pDj-1);"
 emit "_, int Dj_end = pos_iter_Dj(Dj-1_segend - 1);"

 for Dj in noncanonical-dims(L):
 emit-scratch-array-assembly(Dj)
 if Dj is unordered:
 emit "sort(Dj_scratch, 0, Dj_end);"
 emit "int itDj = 0;"

 for Lp in L:
 if iterator for each Dj in merged-dims(Lp) is unfused:
 let mdims = merged-dims(Lp)
 emit “while(all(["{p|it|iv}Dj < Dj_end" for Dj in mdims])) {”

 for Dj in coord-value-iteration-dims(Lp):
 emit “int pDj, bool fDj = coord_access_Dj(pDj-1,...,ivDj);”
 emit "while (!fDj && ivDj < Dj_end)"
 emit "pDj, fDj = coord_access_Dj(pDj-1,...,++ivDj);"
 for Dj in coord-position-iteration-dims(Lp):
 emit “int ivDj, bool fDj = pos_access_Dj(pDj,...,ivDj-1);”
 emit "while (!fDj && pDj < Dj_end)"
 emit "ivDj, fDj = pos_access_Dj(++pDj,...,ivDj-1);"
 let cmdims = canonical-merged-dims(Lp)
 emit "if(all([“fDj” for Dj in cmdims])) {"
 for Dj in noncanonical-dims(Lp):
 emit "int ivDj = Dj_scratch[itDj].i;"
 emit "int pDj = Dj_scratch[itDj].p;"

 emit “int iv = min([“ivDj” for Dj in merged-dims(Lp)]);”
 for Dj in locate-supported-dims(Lp):
 emit "int pDj, bool fDj = locate_Dj(pDj-1,...,iv);"

 for Dj in noncanonical-dims(Lp) U coord-position-iteration-dims(Lp):
 emit "int Dj_segend = pDj + 1;"
 if Dj is not unique and iterator for Dj is unfused:
 emit-deduplication-loop(Dj)

 emit-available-expressions(index-expr, iv)
 if result dimension Dj supports insert and iv indexes Dj:
 emit "int pDj, _ = locate_Dj(pDj-1,...,iv);"
 for Lq in sub-lattice(Lp): # a case per lattice point below Lp
 let mdims = merged-dims(Lq) \ full-dims(Lq)
 let locdims = locate-supported-dims(Lq) \ full-dims(Lq)
 emit “if (all([“ivDj == iv” for Dj in mdims]) &&
 all(["fDj" for Dj in locdims])) {”
 for child-iv in children-in-iteraton-graph(iv):
 code-gen(expression(Lq), child-iv)
 emit-reduction-compute()
 emit-index-assembly()
 emit-compute()
 if result dimension Dj supports append and iv indexes Dj:
 emit “pDj++;”
 emit “}”

 for Dj in merged-dims(Lp):
 if Dj is not full:
 emit "if (ivDj == iv) "
 if Dj in coord-value-iteration-dims(Lp):
 emit "ivDj++;"
 else:
 emit "{p|it}Dj = Dj_segend;"
 emit "}"
 if iterator for each Dj in merged-dims(Lp) is unfused:
 emit "}"

1

2

3

4

6

5

7

8

9

10

11

5

3

64

code-gen(index-expr, iv):
 let L = merge-lattice(index-expr, iv)

 for Dj in coord-value-iteration-dims(L):
 emit "int ivDj, int Dj_end = coord_iter_Dj(ivD1,...,ivDj-1);"
 for Dj in coord-position-iteration-dims(L):
 if Dj-1 is unique:
 emit "int pDj, int Dj_end = pos_iter_Dj(pDj-1);"
 else:
 emit "int pDj, _ = pos_iter_Dj(pDj-1);"
 emit "_, int Dj_end = pos_iter_Dj(Dj-1_segend - 1);"

 for Dj in noncanonical-dims(L):
 emit-scratch-array-assembly(Dj)
 if Dj is unordered:
 emit "sort(Dj_scratch, 0, Dj_end);"
 emit "int itDj = 0;"

 for Lp in L:
 if iterator for each Dj in merged-dims(Lp) is unfused:
 let mdims = merged-dims(Lp)
 emit “while(all(["{p|it|iv}Dj < Dj_end" for Dj in mdims])) {”

 for Dj in coord-value-iteration-dims(Lp):
 emit “int pDj, bool fDj = coord_access_Dj(pDj-1,...,ivDj);”
 emit "while (!fDj && ivDj < Dj_end)"
 emit "pDj, fDj = coord_access_Dj(pDj-1,...,++ivDj);"
 for Dj in coord-position-iteration-dims(Lp):
 emit “int ivDj, bool fDj = pos_access_Dj(pDj,...,ivDj-1);”
 emit "while (!fDj && pDj < Dj_end)"
 emit "ivDj, fDj = pos_access_Dj(++pDj,...,ivDj-1);"
 let cmdims = canonical-merged-dims(Lp)
 emit "if(all([“fDj” for Dj in cmdims])) {"
 for Dj in noncanonical-dims(Lp):
 emit "int ivDj = Dj_scratch[itDj].i;"
 emit "int pDj = Dj_scratch[itDj].p;"

 emit “int iv = min([“ivDj” for Dj in merged-dims(Lp)]);”
 for Dj in locate-supported-dims(Lp):
 emit "int pDj, bool fDj = locate_Dj(pDj-1,...,iv);"

 for Dj in noncanonical-dims(Lp) U coord-position-iteration-dims(Lp):
 emit "int Dj_segend = pDj + 1;"
 if Dj is not unique and iterator for Dj is unfused:
 emit-deduplication-loop(Dj)

 emit-available-expressions(index-expr, iv)
 if result dimension Dj supports insert and iv indexes Dj:
 emit "int pDj, _ = locate_Dj(pDj-1,...,iv);"
 for Lq in sub-lattice(Lp): # a case per lattice point below Lp
 let mdims = merged-dims(Lq) \ full-dims(Lq)
 let locdims = locate-supported-dims(Lq) \ full-dims(Lq)
 emit “if (all([“ivDj == iv” for Dj in mdims]) &&
 all(["fDj" for Dj in locdims])) {”
 for child-iv in children-in-iteraton-graph(iv):
 code-gen(expression(Lq), child-iv)
 emit-reduction-compute()
 emit-index-assembly()
 emit-compute()
 if result dimension Dj supports append and iv indexes Dj:
 emit “pDj++;”
 emit “}”

 for Dj in merged-dims(Lp):
 if Dj is not full:
 emit "if (ivDj == iv) "
 if Dj in coord-value-iteration-dims(Lp):
 emit "ivDj++;"
 else:
 emit "{p|it}Dj = Dj_segend;"
 emit "}"
 if iterator for each Dj in merged-dims(Lp) is unfused:
 emit "}"

1

2

3

4

6

5

7

8

9

10

11

5

3

Figure 4-5: Recursive algorithm for generating code that computes tensor alge-
bra expressions on coordinate hierarchies. coordinate-value-iteration-dims and
coordinate-position-iteration-dims all exclude dimensions in noncanonical-dims.
All three and merged-dims also exclude dimensions in locate-supported-dims for in-
tersection merges. In this context, canonical dimensions refer to those that do not need to
be backed up by a scratch array list as described in Section 4.4.

65

int iB1, int B1_end = B1_coord_iter();
int pC1, int C1_end = C1_pos_iter(0);
while (iB1 < B1_end && pC1 < C1_end) {
 int pB1 = B1_coord_access(0, iB1);
 int iC1 = C1_pos_access(pC1);
 int i = iB1;
 int C1_segend = C1_pos + 1;
 while (C1_segend < C1_end && C1_pos_access(C1_segend) == <i, true>)
 C1_segend++;
 int pA1, _ = A1_locate(0, i);
 int pB2, int B2_end = B2_pos_iter(pB1);
 int pC2, _ = C2_pos_iter(pC1);
 _, int C2_end = C2_pos_iter(C2_segend - 1);
 while (pB2 < B2_end && pC2 < C2_end) {
 int jB2 = B2_pos_access(pB2, i);
 int jC2 = C2_pos_access(pC2, i);
 int j = min(jB2, jC2);
 int B2_segend = pB2 + 1;
 int C2_segend = pC2 + 1;
 int pA2 = A2_locate(pA1, i, j);
 if (jB2 == j && jC2 == j) {
 A_vals[pA2] = B_vals[pB2] + C_vals[pC2];
 } else if (jB == j) {
 A_vals[pA2] = B_vals[pB2];
 } else if (jC == j) {
 A_vals[pA2] = C_vals[pC2];
 }
 if (jB2 == j) pB2 = B2_segend;
 if (jC2 == j) pC2 = C2_segend;
 }
 while (pB2 < B2_end) {
 int jB2 = B2_pos_access(pB2, i);
 int j = jB2;
 int B2_segend = pB2 + 1;
 int pA2 = A2_locate(pA1, i, j);
 A_vals[pA2] = B_vals[pB2];
 pB2 = B2_segend;
 }
 while (pC2 < C2_end) {
 int jC2 = C2_pos_access(pC2, i);
 int j = jC2;
 int C2_segend = pC2 + 1;
 int pA2 = A2_locate(pA1, i, j);
 A_vals[pA2] = C_vals[pC2];
 pC2 = C2_segend;
 }
 iB1++;
 pC1 = C1_segend;
}

1
3
4
7

9

10

1

3
4
7

9

10

11

3

3

4
7
9

10
11

4
7
9

10
11
3

11
3

Figure 4-6: Sparse matrix addition kernel, which adds a CSR matrix to a sorted COO matrix
with no empty row, emitted by our code generation algorithm. The labels on the margin
map each line in the generated code to the part of the algorithm that emits it. For clarity, we
simpli�ed the generated code by eliminating trivial if, while, and min statements. Tuples
are denoted with angle brackets (e.g., <i, true>).

66

int iB1 = 0;
int B1_end = B1_size;
int pC1 = C1_pos[0];
int C1_end = C1_pos[1];
while (iB1 < B1_end && pC1 < C1_end) {
 int pB1 = (0 * B1_size) + iB1;
 int iC1 = C1_idx[pC1];
 int i = iB1;
 int C1_segend = C1_pos + 1;
 while (C1_segend < C1_end && C1_idx[C1_segend] == i)
 C1_segend++;
 int pA1 = (0 * A1_size) + i;
 int pB2 = B2_pos[pB1];
 int B2_end = B2_pos[pB1 + 1];
 int pC2 = pC1;
 int C2_end = C2_segend;
 while (pB2 < B2_end && pC2 < C2_end) {
 int jB2 = B2_idx[pB2];
 int jC2 = C2_idx[pC2];
 int j = min(jB2, jC2);
 int B2_segend = pB2 + 1;
 int C2_segend = pC2 + 1;
 int pA2 = (pA1 * A2_size) + j;
 if (jB2 == j && jC2 == j) {
 A_vals[pA2] = B_vals[pB2] + C_vals[pC2];
 } else if (jB == j) {
 A_vals[pA2] = B_vals[B2_pos];
 } else if (jC == j) {
 A_vals[pA2] = C_vals[C2_pos];
 }
 if (jB2 == j) pB2 = B2_segend;
 if (jC2 == j) pC2 = C2_segend;
 }
 while (pB2 < B2_end) {
 int jB2 = B2_idx[pB2];
 int j = jB2;
 int B2_segend = pB2 + 1;
 int pA2 = (pA1 * A2_size) + j;
 A_vals[pA2] = B_vals[B2_pos];
 pB2 = B2_segend;
 }
 while (pC2 < C2_end) {
 int jC2 = C2_idx[pC2];
 int j = jC2;
 int C2_segend = pC2 + 1;
 int pA2 = (pA1 * A2_size) + j;
 A_vals[pA2] = C_vals[C2_pos];
 pC2 = C2_segend;
 }
 iB1++;
 pC1 = C1_segend;
}

1

3
4
7

9

10

1

3
4
7

9

10

11

3

3

4
7
9

10
11

4
7
9

10
11
3

11
3

Figure 4-7: Sparse matrix addition kernel shown in Figure 4-6 with all level function calls
inlined. This version is fully specialized to CSR and COO input matrices.

67

68

Chapter 5

Evaluation

We evaluate our technique against a wide array of existing sparse linear and tensor algebra

libraries and �nd that our technique generates sparse tensor algebra kernels for many

disparate storage formats that are competitive with hand-implemented kernels in terms of

performance, showing that generality and performance need not be mutually exclusive.

We further �nd that such generality is crucial for achieving performance in real-world

tensor algebra applications. Kjolstad et al. demonstrated similar claims for the technique

they proposed in [34], which handles a strict subset of formats that our technique supports.

As our technique generates identical code for those formats, the rest of this chapter will

focus mainly on tensor formats not supported by the technique Kjolstad et al. proposed.

5.1 Experimental Setup

We implement our technique as an extension to taco [35], an open-source tensor algebra

library that implements the compiler theory described in [34]. We evaluate our technique

against six existing sparse linear algebra libraries: Intel MKL [28], SciPy [30], Eigen [27],

uBLAS [72], Gmm++ [52], and OSKI [71]. Intel MKL is a math processing library for

C and Fortran that is heavily optimized for Intel processors. SciPy is a widely used

scienti�c computing library for Python. Eigen [27], uBLAS [72] and Gmm++ [52] are C++

libraries that use template metaprogramming to specialize linear algebra operations for fast

69

execution when possible. OSKI [71] is a C library that automatically tunes certain sparse

kernels to take advantage of optimizations such as register blocking and vectorization.

We also evaluate our technique against two existing sparse tensor algebra libraries:

the MATLAB Tensor Toolbox [8], and TensorFlow [1]. The Tensor Toolbox is a MATLAB

library that implements a wide range of kernels and factorization algorithms for dense

and sparse tensors of any order. TensorFlow is a popular machine learning library that

supports a number of basic operations on sparse tensors.

All experiments are run on a two-socket, 12-core/24-thread 2.4 GHz Intel Xeon E5-2695

v2 machine with 30 MB of L3 cache per socket and 128 GB of main memory, running GCC

5.4.0 and MATLAB 2016b. We run each experiment multiple times with the cache cleared

of input and output data before each run and report average execution times. All results

are for single-threaded execution.

We run our experiments with matrices and higher-order tensors from real-world ap-

plications, obtained from the SuiteSparse Matrix Collection [21] and the FROSTT Tensor

Collection [57]. Table 5.1 reports some relevant statistics pertaining to these tensors.

We store tensor coordinates as integers whenever possible and store component values

as double-precision �oats; the TTM and INNERPROD kernels implemented in the Ten-

sor Toolbox do not support integer coordinates, so for those particular two kernels we

benchmark the Tensor Toolbox with double-precision �oating-point indices.

5.2 Sparse Matrix Computations

Our technique emits e�cient kernels that are specialized to speci�c computations and

to tensor operands with particular attributes. As our experiments show, this lets our

technique achieve competitive performance with more specialized sparse linear algebra

libraries like Intel MKL that hand-implement similar kernels, while also allowing our

technique to outperform more general hand-implemented libraries like TensorFlow that

cannot as e�ectively optimize for the computation or data.

70

Table 5.1: Summary of tensors used in experiments. The last column describes, for each
order-2 tensor (matrix), the number of diagonals that contain at least one non-zero.

Tensor Domain Dimensions Non-zeros Diagonals

pdb1HYS Protein data base 36K × 36K 4,344,765 25,577
obstclae Optimization 40K × 40K 197,608 5
rma10 3D CFD 46K × 46K 2,329,092 17,367
dixmaanl Optimization 60K × 60K 299,998 7
cant FEM/Cantilever 62K × 62K 4,007,383 99
consph FEM/Spheres 83K × 83K 6,010,480 13,497
denormal Counter-example prob. 89K × 89K 1,156,224 13
Baumann Chemical master eqn. 112K × 112K 748,331 7
cop20k FEM/Accelerator 121K × 121K 2,624,331 221,205
shipsec1 FEM 141K × 141K 3,568,176 10,475
scircuit Circuit 171K × 171K 958,936 159,419
mac_econ Economics 207K × 207K 1,273,389 511
pwtk Wind tunnel 218K × 218K 11,524,432 19,929
Lin Structural prob. 256K × 256K 1,766,400 7
synth1 Synthetic matrix 500K × 500K 1,999,996 4
synth2 Synthetic matrix 1M × 1M 1,999,999 2
ecology1 Animal movement 1M × 1M 4,996,000 5
webbase Web connectivity 1M × 1M 3,105,536 564,259
atmosmodd Atmospheric model 1.3M × 1.3M 8,814,880 7

Facebook Social media 1.6K × 64K × 64K 737,934
NELL-2 Machine learning 12K × 9.2K × 29K 76,879,419
NELL-1 Machine learning 2.9M × 2.1M × 25M 143,599,552

COO Kernels We measure the performance of sparse matrix-vector multiplication

(SpMV), sparse matrix-dense matrix multiplication (SpDM), and sparse matrix addition

kernels that compute on matrices stored in the COO format. The kernels are generated

with our technique and hand-implemented in Intel MKL, SciPy, and TensorFlow. Intel MKL

and SciPy only support the struct of arrays (SoA) variant of the COO format, where each

tensor dimension has a corresponding array that stores only the coordinates along that

dimension; this is the variant illustrated in Figure 2-2c. TensorFlow, on the other hand,

only supports the array of structs (AoS) variant, where a single array stores the elements

of the idx arrays in the SoA variant in an interleaved fashion. By contrast, our technique

supports both variants, which demonstrates the versatility of our approach; supporting

71

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

2.0

2.5

ca
nt

co
ns

ph

co
p2

0k

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sh
ips

ec
1

web
ba

se

taco (SoA) taco (AoS) TensorFlow MKL SciPy

Figure 5-1: Normalized execution time of COO SpMV (y = Ax , where A is a COO matrix
and x and y are dense vectors) with our technique (taco) and existing sparse linear algebra
libraries, relative to taco with SoA COO for each matrix.

the AoS variant of the COO format simply requires de�ning variants of the compressed

and singleton level formats with the following pos_access function:

pos_access(pk, i1, . . ., ik−1):

return <idx[2 * pk + d], true>

where d is 0 for the row dimension and 1 for the column dimension.

Figures 5-1, 5-2, and 5-3 shows the results of this experiment. SciPy does not support

computing SpDM and matrix addition directly on COO matrices and Intel MKL also does

not support computing matrix addition on COO matrices, so we omit those measurements.

The experimental results demonstrate that our technique emits code that is, on average,

equal to or better than existing libraries in terms of performance for computations on COO

matrices. In fact, the COO SpMV kernel our technique generates implements the exact

same algorithm as SciPy and Intel MKL, which accounts for the identical performance

between the three kernels. TensorFlow, by contrast, does not implement a dedicated

COO SpMV kernel and the operation must therefore be computed with the COO SpDM

kernel, casting the input vector as a matrix with a single column. Thus, TensorFlow incurs

unnecessary branching overhead when computing SpMV as every access into the input

72

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

2.0

ca
nt

co
ns

ph

co
p2

0k

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sh
ips

ec
1

web
ba

se

taco (SoA) taco (AoS) TensorFlow MKL SciPy

Figure 5-2: Normalized execution time of COO SpDM (A = BC , where B is a COO matrix
and A and C are dense matrices) with our technique (taco) and existing sparse linear
algebra libraries, relative to taco with SoA COO for each matrix. We omit results for SciPy
as it does not support computing SpDM directly on COO matrices.

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

1.0

2.0

3.0

4.0

5.0

ca
nt

co
ns

ph

co
p2

0k

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sh
ips

ec
1

web
ba

se

taco (AoS) TensorFlow MKL SciPy

Figure 5-3: Normalized execution time of COO matrix addition (A = B + C , where the
inputs and output are all stored in the AoS variant of the COO format) with our technique
(taco) and TensorFlow, relative to taco for each matrix. We omit results for Intel MKL
and SciPy as neither supports computing matrix addition directly on COO matrices.

73

N
o
rm

a
liz

e
d

 e
xe

c
u
tio

n
 t

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ob
st
cla

e

di
xm

aa
nl

de
no

rm
al

Bau
m

an
n Lin

sy
nt

h1

sy
nt

h2

ec
ol
og

y1

at
m

os
m

od
d

taco MKL SciPy TensorFlow

Figure 5-4: Normalized execution time of DIA SpMV with our technique (taco) and
existing sparse linear algebra libraries, relative to taco for each matrix. We omit results
for TensorFlow as it does not support the DIA format.

vector requires a loop over its trivial column dimension. Similarly, to be able to support

tensors of any order without having to implement a separate kernel for every possible

order, TensorFlow’s sparse tensor addition kernel requires loops that are parameterized

on the tensor order for copying or comparing coordinates for a single tensor component,

which introduces additional branching overhead. Our metaprogramming approach, on

the other hand, generates code that is specialized to the order of the input and output

tensors, which allows it to avoid unnecessary conditional branches when working with

coordinates for a single tensor component.

DIA Kernels We also measure and compare the performance of SpMV kernels that

compute on DIA matrices. The kernels are generated with our technique and hand-

implemented in Intel MKL and SciPy; we omit TensorFlow as it does not support the DIA

format. The results of this experiment are shown in Figure 5-4. Again, our technique emits

code that implements the same high-level algorithm as SciPy, which explains the lack of

observable performance di�erences between the two. Our technique is about 18% slower

than Intel MKL on average as the latter tiles the computation to reduce the cache miss rate

74

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

rm
a1

0
ca

nt

co
p2

0k

sc
irc

uit

mac
_e

co
n

pw
tk

taco MKL Eigen uBLAS Gmm++ OSKI

Figure 5-5: Normalized execution time of CSR SpMV with our technique (taco) and existing
sparse linear algebra libraries, relative to taco for each matrix.

for the input vector; future work includes generalizing our technique to support iteration

space tiling, which would also be bene�cial for dense kernels that take unblocked inputs.

CSR Kernels We additionally compare the performance of CSR kernels generated with

our technique against existing sparse linear algebra libraries for SpMV, sampled dense-

dense matrix product (SDDMM), and RESIDUAL. SDDMM has applications in machine

learning [77], while RESIDUAL is used in the conjugate gradient method for instance.

Figures 5-5, 5-6, and 5-7 shows the results of this experiment. As before, we omit

results for libraries that do not support a particular operation. For all three operations we

benchmark, our technique emits identical code as the technique Kjolstad et al. proposed.

The CSR SpMV kernel our technique generates is, on average, competitive with Intel

MKL and matches, if not slightly exceeds, all the other libraries we evaluate in terms of

performance. This is not very surprising as our technique emits code that implements the

same high-level algorithm used by other libraries; in fact, the core of OSKI’s SpMV kernel

has virtually the same code structure as the kernel generated with our technique.

For SDDMM, our technique is able to minimize the number of �oating-point opera-

tions needed by emitting code that exploits the locate capability provided by the dense

matrix operands in order to avoid computing components of the intermediate dense matrix

75

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

rm
a1

0
ca

nt

co
p2

0k

sc
irc

uit

mac
_e

co
n

pw
tk

22,400x73,405x59,496x24,835x5,186x2,412x

taco MKL Eigen uBLAS Gmm++ OSKI

Figure 5-6: Normalized execution time of CSR SDDMM (A = B ◦ (CD) , where A and B
are CSR matrices and C and D are dense matrices) with our technique (taco) and existing
sparse linear algebra libraries, relative to taco for each matrix. We omit results for libraries
that do not support the computation.

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

rm
a1

0
ca

nt

co
p2

0k

sc
irc

uit

mac
_e

co
n

pw
tk

taco MKL Eigen uBLAS Gmm++ OSKI

Figure 5-7: Normalized execution time of CSR RESIDUAL (y = b −Ax , where A is a CSR
matrix and b, x , and y are dense vectors) with our technique (taco) and existing sparse
linear algebra libraries, relative to taco for each matrix.

76

product that cannot possibly contribute non-zeros to the output (i.e., the components with

coordinates that correspond to zeros in the sparse matrix operand). Eigen provides a dedi-

cated kernel that implements the same algorithm and thus achieves similar performance.

uBLAS, by contrast, e�ectively computes the entire dense matrix product and consequently

does Θ(n3) work as opposed to Θ(n · nnz(B)) for n-by-n inputs, which explains the orders

of magnitude di�erence in performance we observe in Figure 5-6.

Our technique also generates fused compound kernels that avoid large intermediate

results, which enables it to match or even exceed the performance of all the libraries we

evaluate for RESIDUAL. For instance, to compute RESIDUAL with Intel MKL or OSKI, one

must �rst copy the input vector b to the output vector—in essence treating the output as a

temporary vector—and then call the SpMV kernel. The reason is that these libraries only

support incrementing the output, and not some arbitrary input vector, by the result of a

matrix-vector multiplication. Thus, the output vector has to be scanned twice in order to

perform the computation, which results in increased memory tra�c if the vector is too

large to �t in cache. Our technique, on the other hand, generates code for RESIDUAL that

computes each component of the matrix-vector product as needed when evaluating the

top-level vector summation. This eliminates the need for a temporary vector and thereby

reduces memory tra�c with larger inputs such as webbase-1M.

5.3 Sparse Higher-Order Tensor Computations

We additionally compare the performance of kernels generated with our technique and

equivalent hand-implemented kernels in the MATLAB Tensor Toolbox (TTB) and Tensor-

Flow (TF) for the following higher-order tensor computations:

TTV Aij =
∑

k Bijkck

TTM Aijk =
∑

l BijlCkl

MTTKRP Aij =
∑

k,l BiklCkjDl j

PLUS Aijk = Bijk +Cijk

INNERPROD α =
∑

i,j,k BijkCijk

77

Table 5.2: Execution time (in milliseconds) of various sparse tensor algebra kernels com-
puting on COO tensors. Figures in parentheses show slowdown relative to our technique.
A missing entry means an operation is not supported by a particular library, while OOM
denotes that the kernel runs out of memory. We omit results for TensorFlow PLUS with
NELL-2 and NELL-1 as TensorFlow’s protocol bu�ers do not support tensors of those sizes.

Facebook NELL-2 NELL-1

taco TTB TF taco TTB taco TTB

TTV 13 149 (11.5) 350 14786 (42.2) 2302 33970 (14.8)
TTM 444 16271 (36.7) 4616 49417 (10.7) 56478 OOM
MTTKRP 44 285 (6.5) 3555 42111 (11.8) 21042 110502 (5.3)
PLUS 38 468 (12.3) 60 (1.6) 3085 72366 (23.5) 6311 123387 (19.6)
INNERPROD 10 995 (99.3) 380 144800 (381.0) 904 262605 (290.5)

where all the 3rd-order input tensors as well as the outputs of TTV, TTM, and PLUS are

stored in the COO format. Here we assume all the COO tensors store non-zero coordinates

in order; the sparse tensor class constructor that the Tensor Toolbox implements enforces

this property, while TensorFlow’s PLUS kernel also assumes this property. All of the

operations we benchmark have real-world applications. TTM and MTTKRP, for example,

are building blocks of widely used algorithms for computing Tucker decompositions and

canonical polyadic (CP) decompositions of tensors respectively [42, 60].

Table 5.2 shows the results of this experiment.1 The Tensor Toolbox and TensorFlow

exemplify di�erent points in the trade-o� space for hand-written sparse tensor algebra

libraries. The Tensor Toolbox supports all of the operations we evaluate but does not

achieve high performance for any of them, while TensorFlow supports only one operation

but computes it more e�ciently than the Tensor Toolbox. Our technique, meanwhile,

generates e�cient code for computing all �ve operations, demonstrating that generality

and performance need not be mutually exclusive.

As with sparse matrix addition, we observe that code generated speci�cally for adding

3rd-order COO tensors has better performance than the generic sparse tensor addition ker-

nel in TensorFlow that can add tensors of any order. Furthermore, our technique generates

code that signi�cantly outperforms equivalent Tensor Toolbox kernels in performance,

often by at least an order of magnitude. This is largely the consequence of the Tensor
1 We omit evaluation of Intel MKL and SciPy as neither supports sparse higher-order tensor algebra.

78

Toolbox’s general approach to sparse tensor computation, which relies on functionalities

built into MATLAB that cannot always directly operate on the indices storing the tensors

or exploit properties of the tensors in order to optimize the computation. To add two

sparse tensors, for instance, the Tensor Toolbox computes the set of non-zero coordinates

in the output by calling a MATLAB built-in function that computes the union of the sets

of non-zero coordinates in the inputs. However, MATLAB’s implementation of the set

union operation cannot exploit the fact that the inputs are already individually sorted

and therefore requires sorting the concatenation of the two input indices. By contrast,

our technique emits code that is able to directly iterate over and merge the two input

indices without needing to re-sort them �rst, which reduces the asymptotic complexity

of the computation by a factor of Θ(log(nnz(B) + nnz(C))). Additionally, our technique

emits code that directly assembles sparse output indices, whereas for some computations

like TTM the Tensor Toolbox has to store results in intermediate dense structures that

subsequently get converted to sparse outputs.

5.4 Comparison of Formats

As we have seen, our technique generates sparse tensor kernels that are on par with

hand-implemented kernels in terms of performance for a range of very di�erent storage

formats. In the rest of this section, we empirically demonstrate some of the trade-o�s

associated with these formats—focusing on ones not discussed in [34]—and show no tensor

storage format is ideal under every circumstance.

The most suitable format for storing a tensor depends on the nature of the computation

to which the tensor serves as input. The COO format, for instance, is convenient for

importing and exporting sparse tensors to and from an application as it is an intuitive way

to represent sparse tensors and is similar to widely used �le formats for encoding sparse

tensors. It is also generally not as performant as the CSR format due to its increased memory

footprint. As the blue bars in Figure 5-8 show, computing matrix-vector products directly on

COO matrices can take up to twice as much time as the same computation with equivalent

CSR matrices. If an input matrix is imported into the application in the COO format though,

79

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

ca
nt

co
ns

ph

co
p2

0k

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sh
ips

ec
1

web
ba

se

CSR Compute CSR Assembly

COO
Compute

Figure 5-8: Normalized execution time of CSR SpMV relative to COO SpMV, taking into
account the cost of assembling CSR indices for the input matrices. These results show
that computing with CSR is faster only if the cost of assembling input matrices can be
amortized over multiple computations.

then it has to be converted to a CSR matrix before the more e�cient CSR SpMV kernel

can be used. This preprocessing step incurs signi�cant overhead that typically exceeds the

cost of directly computing on the original COO matrix, as the red bars in Figure 5-8 show.

The overhead can be amortized for iterative applications that repeatedly compute on the

same matrix, making CSR SpMV worthwhile from a performance standpoint. However,

for non-iterative applications, COO SpMV can o�er better end-to-end performance by

eliminating the need to incur format conversion overhead.

Which format provides the best performance for a particular computation also highly

depends on the sparsity structure of the tensor. To illustrate this, we measure and compare

the performance of SpMV computed on CSR and DIA matrices using kernels generated

with our technique. As the results in Figure 5-9 demonstrate, for matrices like those bench-

marked in Figure 5-4 whose non-zeros are all con�ned to a few densely-�lled diagonals,

storing them in the DIA format exposes opportunities for vectorization and can thus

increase SpMV performance by up to 22% relative to CSR SpMV. On the other hand, for

matrices like those benchmarked in Figure 5-1 whose non-zeros happen to be distributed

among many diagonals that are all sparsely �lled, the DIA format is suboptimal as it has to

80

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

de
no

rm
al

Bau
man

n Lin

sy
nth

1

sy
nth

2

atm
os

mod
d

pd
b1

HYS
rm

a1
0

sh
ips

ec
1

186x 251x 143x

Figure 5-9: Normalized execution time of taco’s DIA SpMV kernel relative to taco’s CSR
SpMV kernel. Storing the input matrix in the DIA format can accelerate SpMV if all the
non-zeros in the matrix are con�ned to a few densely-�lled diagonals, but can drastically
degrade performance if that is not the case.

explicitly store all zeros in each nonempty diagonal. All these explicit zeros also have to be

processed when computing the matrix-vector product even though they cannot contribute

to the result. This can degrade the performance of the computation by orders of magnitude

relative to CSR SpMV, as results for the rightmost three matrices in Figure 5-9 show.

81

82

Chapter 6

Related Work

Related work in this area can be roughly categorized into explorations of di�erent sparse

tensor formats (including sparse matrix and vector formats), prior work on abstractions

for sparse tensor storage and code generation for sparse tensor computations, and other

existing systems for sparse and dense linear and tensor algebra.

Sparse tensor formats There is a large body of work on sparse matrix and higher-order

tensor formats. Sparse matrix data structures were �rst introduced by Tinney and Walker,

who appear to have implemented the CSR data structure [68], and an early library that

supports sparse operations was described by McNamee [47]. The CSC sibling is also

commonly used, partly because it is convenient for direct solves [20]. Furthermore, Buluç

and Gilbert proposed DCSC, which is a version of CSC that also compresses the column

dimension for hypersparse matrices [16]. Many matrices also consist of dense blocks that

contain most or all non-zero values and the BCSR format is designed for this [71]. Buluç

et al. [15] proposed another blocked format called CSB, which can be viewed as a dense

matrix consists of sparse sub-matrices, that permits e�cient parallel sparse matrix-vector

and matrix-transpose-vector multiplication with the same matrix representation. Buluç

et al. additionally conjectured a hybrid CSB/BCSR format that can improve register reuse

over CSB [15]. Researchers have also studied even more specialized formats that expose

vectorization opportunities for SpMV such as ELL, which is specialized for matrices with

�xed-size rows [33], and DIA, which is designed for diagonal and banded matrices [55].

83

Many formats for sparse higher-order tensors have also been proposed, including COO [8]

and CSF [60], the latter of which generalizes (D)CSR to higher-order tensors. Baskaran

et al. [10] proposed the mode-generic sparse tensor format and the mode-speci�c sparse

tensor format, which generalize the idea of block COO to higher-order tensors for reducing

memory storage and improving data locality. This work shows that all these tensor formats

can be represented within the same framework with just six composable level formats that

share a common interface.

Other sparse tensor formats that have been proposed include BICRS [76], which extends

the CSR format to e�ciently store non-zeros of a sparse matrix in Hilbert order. For

e�ciently computing SpMV on GPUs, Monakov et al. [48] proposed sliced ELLPACK,

which generalizes ELL by partitioning the matrix into strips of a �xed number of adjacent

rows, with each strip possibly storing a di�erent number of non-zeros per row so as to

minimize the number of stored zeros. Liu et al. [42] also proposed F-COO, which extends

COO for enabling e�cient computation of sparse higher-order tensor kernels on GPUs.

Bell and Garland [11] described the HYB format, which stores most components of a matrix

in an ELL submatrix and the remaining components in another COO submatrix. The HYB

format is useful for computing SpMV on vector architectures with matrices that contain

similar numbers of non-zeros in most rows but have a few rows that contain many more

non-zeros. The Cocktail Format, which is used in clSpMV [66], generalizes HYB to support

any number of submatrices that can each be stored in one of nine sparse matrix formats.

Tensor storage abstractions and code generation Researchers have explored di�er-

ent approaches for describing sparse vector and matrix storage for sparse linear algebra

computation. Thibault et al. proposed a technique that describes regular geometric parti-

tions in arrays and that automatically generates corresponding indexing functions [67].

This enables compression when the matrix has regular structure, but it does not generalize

to general unstructured matrices.

In the context of compilers for sparse linear and tensor algebra, Kjolstad et al. proposed

a formulation for tensor formats that designates each dimension as either dense or sparse,

which are stored using the same physical indices as dense and compressed level types in

84

our abstraction [34]. However, their formulation can only describe formats that are com-

posed strictly of those two speci�c types of indices, which precludes their technique from

generating tensor algebra kernels that compute on many other common formats like COO

and DIA. The Bernoulli project, which adopted a relational database approach to sparse

linear algebra compilation, proposed a black-box protocol with access paths that describe

how matrices map to physical storage [39, 65, 38]. The black-box protocol is similar to

our level format interface, but they only address linear algebra and only computations

involving multiplications and not additions. By contrast, the coordinate hierarchy abstrac-

tion supports code generation for any tensor algebra expression. SIPR [51], a framework

that transforms dense linear algebra code to sparse code, represents sparse vectors and

matrices with hard-coded element stores that provide enumerators and accessors that are

analogous to level capabilities. The framework provides just two types of element store

and cannot be readily extended to support new types of element store for representing

other formats. Arnold [5, 4] proposed LL, a veri�able functional language for sparse matrix

programs in which a sparse matrix format is de�ned as some nesting of lists and pairs

that encode components of a dense matrix. How an LL format should be interpreted is

described as part of the computation in LL, so the same computation with di�erent matrix

formats can require drastically di�erent de�nitions.

Bik and Wijsho� [13, 14] developed an early compiler that transforms dense linear alge-

bra code to equivalent sparse code by moving non-zero guards into sparse data structures.

More recently, Venkat et al. [70] proposed a technique for generating inspector/executor

code that may, at runtime, transform input matrices from one format to another. Both

techniques support a �xed set of standard sparse matrix formats and only generate code

that work with matrices stored in those formats. Finally, Rong et al. [54] proposed a

technique that discovers and exploits invariant properties of matrices in a sparse linear

algebra program in order to optimize the program as a whole.

Dense and sparse linear and tensor algebra systems Much work has been done on

languages [29, 43, 12], libraries [3, 73, 27, 69, 56, 28], and compilers [63, 49] for dense linear

algebra as well as loop transformations that can optimize dense loop nests [75, 74, 46].

85

For dense tensor algebra, an early e�ort was the Tensor Contraction Engine [6], which is

a framework that automatically optimizes dense tensor contractions (multiplications) in

NWChem. libtensor [24], CTF [62], and GETT [64] are all examples of systems and

techniques that transform tensor contractions into dense matrix multiplications, for

which many high-performance implementations exist, by transposing tensor operands.

BLIS [44] avoids explicit transpositions by fusing them with later stages, while InTensLi [40]

avoids transpositions altogether by computing tensor-times-matrix products in-place. Cai

et al. [18] explored techniques for optimizing MTTKRP with symmetric tensors. Finally,

TensorFlow [1] is a recent example of frameworks for machine learning where tensors are

passed between computation kernels in a data�ow computation.

MATLAB [43], Julia [12], Eigen [27], and PETSc [9] are examples of languages, libraries,

and frameworks that are popularly used for computing with sparse matrices. MATLAB,

Julia, and Eigen support all basic linear algebra operations but with very few sparse

matrix formats; PETSc supports distributed computations with various distributed and

blocked matrix formats. OSKI [71] and pOSKI [17] are well-known sparse linear algebra

libraries that support auto-tuning but are limited to computing SpMV, triangular solves,

matrix powers, and simultaneously multiplying a matrix and its transpose by vectors. For

sparse tensor algebra, the MATLAB Tensor Toolbox [8] is an early system that supports

a wide range of computations with the COO format and other specialized formats for

factorized tensors. More recently, Solomonik and Hoe�er [61] described a sparse version

of CTF. SPLATT [60], which supports fast shared-memory parallel MTTKRP and tensor

factorizations, HyperTensor [31], which supports distributed MTTKRP, and fast shared-

memory and GPU parallel sparse tensor-times-dense-matrix multiplication algorithms

proposed by Li et al. [41] are all examples of techniques that avoid data transformation

overhead with dedicated kernels for computing sparse tensor operations. TensorFlow

similarly implements dedicated kernels to support some sparse tensor operations on COO

tensors [26]. All of these approaches require sparse tensor algebra kernels to be manually

implemented. By contrast, our technique automatically generates such kernels.

86

Chapter 7

Conclusion

We have described a new technique for generating e�cient tensor algebra kernels that

compute on a diverse range of storage formats. We presented a levelized hierarchical

abstraction for tensor storage and showed how just six composable level formats that

implement one or more common capabilities are su�cient to represent a host of widely

used formats that encode tensor structures in disparate ways. We then described a code

generation strategy that works purely on the aforementioned abstraction to emit optimized

code, which exploits declared properties and capabilities of tensor operands without having

to know how concrete level formats actually implement their capabilities. Our technique

enables users to compute on tensors using storage formats that are �tted to their data.

Future work includes de�ning additional level formats that can be composed to enable

support for more tensor formats, including custom formats designed to take advantage

of specialized hardware accelerator capabilities for deep learning architectures [19] or

power-law structures in social graphs for graph analytics. The code generation algorithm

may also be extended with additional optimization strategies for emitting kernels that

better exploit tensor operand properties for performance. For instance, the iterator fusion

optimization described near the end of Section 4.5 can potentially be extended to handle

merging of multiple fused iterators, which would make it applicable to operations involving

multiple COO tensor operands. Additionally, the code generation algorithm may be

adapted to speci�cally target accelerators (e.g., GPUs) and distributed memory systems

(e.g., supercomputers). Our modular approach, which uses the coordinate hierarchy

87

abstraction to keep tensor storage formats and code generation separate, enables these

lines of research to be pursued independently.

88

Appendix A

Sample Generated Kernels

Below are examples of matrix-vector multiplication kernels that take inputs and output

stored in di�erent combinations of formats, all of which are generated using our technique.

The implementation of our technique in taco replaces every while loop over a single

tensor dimension that contains no duplicate coordinates with a for loop.

for (int iA = 0; iA < A0_size; iA++) {

int A0_pos = (0 * A0_size) + iA;

int y0_pos = (0 * y0_size) + iA;

double tj = 0;

for (int jA = 0; jA < A1_size; jA++) {

int A1_pos = (A0_pos * A1_size) + jA;

int x0_pos = (0 * x0_size) + jA;

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

y_val_arr[y0_pos] = tj;

}

Listing A.1: Dense matrix-dense vector product with dense output

for (int iA = 0; iA < A0_size; iA++) {

int A0_pos = (0 * A0_size) + iA;

int y0_pos = (0 * y0_size) + iA;

double tj = 0;

for (int x0_pos = x0_pos_arr[0]; x0_pos < x0_pos_arr[1]; x0_pos++) {

89

int jx = x0_idx_arr[x0_pos];

int A1_pos = (A0_pos * A1_size) + jx;

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

y_val_arr[y0_pos] = tj;

}

Listing A.2: Dense matrix-sparse vector product with dense output

for (int iA = 0; iA < A0_size; iA++) {

int A0_pos = (0 * A0_size) + iA;

int y0_pos = (0 * y0_size) + iA;

double tj = 0;

for (int jA = 0; jA < A1_size; jA++) {

int A1_pos = (A0_pos * A1_size) + jA;

int x0_pos = jA % x0_width;

if (x0_idx_arr[x0_pos] != jA && x0_idx_arr[x0_pos] != -1) {

int end = x0_pos;

do {

x0_pos = (x0_pos + 1) % x0_width;

} while (x0_idx_arr[x0_pos] != jA &&

x0_idx_arr[x0_pos] != -1 && x0_pos != end);

}

if (x0_idx_arr[x0_pos] == jA) {

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

}

y_val_arr[y0_pos] = tj;

}

Listing A.3: Dense matrix-hash map vector product with dense output

for (int A0_pos = A0_pos_arr[0]; A0_pos < A0_pos_arr[1]; A0_pos++) {

int iA = A0_idx_arr[A0_pos];

int y0_pos = (0 * y0_size) + iA;

int A1_pos = A0_pos;

int jA = A1_idx_arr[A1_pos];

int x0_pos = (0 * x0_size) + jA;

double tj = A_val_arr[A1_pos] * x_val_arr[x0_pos];

90

y_val_arr[y0_pos] = y_val_arr[y0_pos] + tj;

}

Listing A.4: COO matrix-dense vector product with dense output

int A0_pos = A0_pos_arr[0];

while (A0_pos < A0_pos_arr[1]) {

int iA = A0_idx_arr[A0_pos];

int y0_pos = (0 * y0_size) + iA;

int A0_segend = A0_pos + 1;

while ((A0_segend < A0_pos_arr[1]) && (A0_idx_arr[A0_segend] == iA)) {

A0_segend++;

}

double tj = 0;

int A1_pos = A0_pos;

while (A1_pos < A0_segend) {

int jA = A1_idx_arr[A1_pos];

int x0_pos = (0 * x0_size) + jA;

double A1_val = A_val_arr[A1_pos];

int A1_segend = A1_pos + 1;

while ((A1_segend < A0_segend) && (A1_idx_arr[A1_segend] == jA)) {

A1_val += A_val_arr[A1_segend];

A1_segend++;

}

tj += A1_val * x_val_arr[x0_pos];

A1_pos = A1_segend;

}

y_val_arr[y0_pos] = tj;

A0_pos = A0_segend;

}

Listing A.5: COO matrix-dense vector product with dense output and duplicates

int y0_pos = 0;

int A0_pos = A0_pos_arr[0];

while (A0_pos < A0_pos_arr[1]) {

int iA = A0_idx_arr[A0_pos];

int A0_segend = A0_pos + 1;

while ((A0_segend < A0_pos_arr[1]) && (A0_idx_arr[A0_segend] == iA)) {

91

A0_segend++;

}

double tj = 0;

int A1_pos = A0_pos;

int x0_pos = x0_pos_arr[0];

while ((A1_pos < A0_segend) && (x0_pos < x0_pos_arr[1])) {

int jA = A1_idx_arr[A1_pos];

int jx = x0_idx_arr[x0_pos];

int j = min(jA, jx);

if ((jA == j) && (jx == j)) {

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

if (jA == j) A1_pos++;

if (jx == j) x0_pos++;

}

y_val_arr[y0_pos] = tj;

y0_idx_arr[y0_pos] = iA;

y0_pos++;

A0_pos = A0_segend;

}

y0_pos_arr[1] = y0_pos;

Listing A.6: COO matrix-sparse vector product with sparse output

for (int iA = 0; iA < A0_size; iA++) {

int A0_pos = (0 * A0_size) + iA;

int y0_pos = (0 * y0_size) + iA;

double tj = 0;

for (int A1_pos = A1_pos_arr[A0_pos];

A1_pos < A1_pos_arr[A0_pos + 1]; A1_pos++) {

int jA = A1_idx_arr[A1_pos];

int x0_pos = (0 * x0_size) + jA;

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

y_val_arr[y0_pos] = tj;

}

Listing A.7: CSR matrix-dense vector product with dense output

92

for (int iA = 0; iA < A0_size; iA++) {

int A0_pos = (0 * A0_size) + iA;

int y0_pos = (0 * y0_size) + iA;

double tj = 0;

int A1_pos = A1_pos_arr[A0_pos];

int x0_pos = x0_pos_arr[0];

while ((A1_pos < A1_pos_arr[A0_pos + 1]) && (x0_pos < x0_pos_arr[1])) {

int jA = A1_idx_arr[A1_pos];

int jx = x0_idx_arr[x0_pos];

int j = min(jA, jx);

if ((jA == j) && (jx == j)) {

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

if (jA == j) A1_pos++;

if (jx == j) x0_pos++;

}

y_val_arr[y0_pos] = tj;

}

Listing A.8: CSR matrix-sparse vector product with dense output

for (int jA = 0; jA < A0_size; jA++) {

int A0_pos = (0 * A0_size) + jA;

int x0_pos = (0 * x0_size) + jA;

double tj = x_val_arr[x0_pos];

for (int A1_pos = A1_pos_arr[A0_pos];

A1_pos < A1_pos_arr[A0_pos + 1]; A1_pos++) {

int iA = A1_idx_arr[A1_pos];

int y0_pos = (0 * y0_size) + iA;

y_val_arr[y0_pos] = y_val_arr[y0_pos] + (A_val_arr[A1_pos] * tj);

}

}

Listing A.9: CSC matrix-dense vector product with dense output

for (int x0_pos = x0_pos_arr[0]; x0_pos < x0_pos_arr[1]; x0_pos++) {

int jx = x0_idx_arr[x0_pos];

int A0_pos = (0 * A0_size) + jx;

93

double tj = x_val_arr[x0_pos];

for (int A1_pos = A1_pos_arr[A0_pos];

A1_pos < A1_pos_arr[A0_pos + 1]; A1_pos++) {

int iA = A1_idx_arr[A1_pos];

int y0_pos = (0 * y0_size) + iA;

y_val_arr[y0_pos] = y_val_arr[y0_pos] + (A_val_arr[A1_pos] * tj);

}

}

Listing A.10: CSC matrix-sparse vector product with dense output

int y0_pos = 0;

for (int A0_pos = A0_pos_arr[0]; A0_pos < A0_pos_arr[1]; A0_pos++) {

int iA = A0_idx_arr[A0_pos];

double tj = 0;

for (int A1_pos = A1_pos_arr[A0_pos];

A1_pos < A1_pos_arr[A0_pos + 1]; A1_pos++) {

int jA = A1_idx_arr[A1_pos];

int x0_pos = (0 * x0_size) + jA;

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

y_val_arr[y0_pos] = tj;

y0_idx_arr[y0_pos] = iA;

y0_pos++;

}

y0_pos_arr[1] = y0_pos;

Listing A.11: DCSR matrix-dense vector product with sparse output

int y0_pos = 0;

for (int A0_pos = A0_pos_arr[0]; A0_pos < A0_pos_arr[1]; A0_pos++) {

int iA = A0_idx_arr[A0_pos];

double tj = 0;

int A1_pos = A1_pos_arr[A0_pos];

int x0_pos = x0_pos_arr[0];

while ((A1_pos < A1_pos_arr[A0_pos + 1]) && (x0_pos < x0_pos_arr[1])) {

int jA = A1_idx_arr[A1_pos];

int jx = x0_idx_arr[x0_pos];

int j = min(jA, jx);

94

if ((jA == j) && (jx == j)) {

tj += A_val_arr[A1_pos] * x_val_arr[x0_pos];

}

if (jA == j) A1_pos++;

if (jx == j) x0_pos++;

}

y_val_arr[y0_pos] = tj;

y0_idx_arr[y0_pos] = iA;

y0_pos++;

}

y0_pos_arr[1] = y0_pos;

Listing A.12: DCSR matrix-sparse vector product with sparse output

for (int kA = 0; kA < A0_size; kA++) {

int A0_pos = (0 * A0_size) + kA;

for (int iA = 0; iA < A1_size; iA++) {

int A1_pos = (A0_pos * A1_size) + iA;

int y0_pos = (0 * y0_size) + iA;

int A2_pos = A1_pos;

int jA = A2_idx_arr[A2_pos];

int x0_pos = (0 * x0_size) + jA;

double tj = A_val_arr[A2_pos] * x_val_arr[x0_pos];

y_val_arr[y0_pos] = y_val_arr[y0_pos] + tj;

}

}

Listing A.13: ELL matrix-dense vector product with dense output

for (int kA = 0; kA < A0_size; kA++) {

int A0_pos = (0 * A0_size) + kA;

for (int iA = max(0, -A1_offset[kA]);

iA < min(A1_size, A2_size - A1_offset[kA]); iA++) {

int A1_pos = (A0_pos * A1_size) + iA;

int y0_pos = (0 * y0_size) + iA;

int A2_pos = A1_pos;

int jA = iA + A1_offset[kA];

int x0_pos = (0 * x0_size) + jA;

double tj = A_val_arr[A2_pos] * x_val_arr[x0_pos];

95

y_val_arr[y0_pos] = y_val_arr[y0_pos] + tj;

}

}

Listing A.14: DIA matrix-dense vector product with dense output

for (int i1A = 0; i1A < A0_size; i1A++) {

int A0_pos = (0 * A0_size) + i1A;

int y0_pos = (0 * y0_size) + i1A;

for (int A1_pos = A1_pos_arr[A0_pos];

A1_pos < A1_pos_arr[A0_pos + 1]; A1_pos++) {

int j1A = A1_idx_arr[A1_pos];

int x0_pos = (0 * x0_size) + j1A;

for (int i2A = 0; i2A < A2_size; i2A++) {

int A2_pos = (A1_pos * A2_size) + i2A;

int y1_pos = (y0_pos * y1_size) + i2A;

double tj2 = 0;

for (int j2A = 0; j2A < A3_size; j2A++) {

int A3_pos = (A2_pos * A3_size) + j2A;

int x1_pos = (x0_pos * x1_size) + j2A;

tj2 += A_val_arr[A3_pos] * x_val_arr[x1_pos];

}

y_val_arr[y1_pos] = y_val_arr[y1_pos] + tj2;

}

}

}

Listing A.15: BCSR matrix-dense vector product with dense output

for (int i1A = 0; i1A < A0_size; i1A++) {

int A0_pos = (0 * A0_size) + i1A;

int y0_pos = (0 * y0_size) + i1A;

for (int j1A = 0; j1A < A1_size; j1A++) {

int A1_pos = (A0_pos * A1_size) + j1A;

int x0_pos = (0 * x0_size) + j1A;

for (int A2_pos = A2_pos_arr[A1_pos];

A2_pos < A2_pos_arr[A1_pos + 1]; A2_pos++) {

int i2A = A2_idx_arr[A2_pos];

int y1_pos = (y0_pos * y1_size) + i2A;

96

int A3_pos = A2_pos;

int j2A = A3_idx_arr[A3_pos];

int x1_pos = (x0_pos * x1_size) + j2A;

double tj2 = A_val_arr[A3_pos] * x_val_arr[x1_pos];

y_val_arr[y1_pos] = y_val_arr[y1_pos] + tj2;

}

}

}

Listing A.16: CSB matrix-dense vector product with dense output

97

98

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A System for Large-scale Machine Learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 265–283. http://dl.acm.org/citation.
cfm?id=3026877.3026899

[2] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Tel-
garsky. 2014. Tensor Decompositions for Learning Latent Variable Models. J. Mach.
Learn. Res. 15, Article 1 (Jan. 2014), 60 pages.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users’
Guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.

[4] Gilad Arnold. 2011. Data-Parallel Language for Correct and E�cient Sparse Matrix
Codes. Ph.D. Dissertation. University of California, Berkeley.

[5] Gilad Arnold, Johannes Hölzl, Ali Sinan Köksal, Rastislav Bodík, and Mooly Sagiv.
2010. Specifying and Verifying Sparse Matrix Codes. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’10). ACM, New
York, NY, USA, 249–260. https://doi.org/10.1145/1863543.1863581

[6] Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina Bibireata,
Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram Krish-
namoorthy, Sandhya Krishnan, Chi-Chung Lam, Qingda Lu, Marcel Nooijen, Russell
Pitzer, J. Ramanujam, P. Sadayappan, and Alexander Sibiryakov. 2006. Automatic
code generation for many-body electronic structure methods: the tensor contraction
engine. Molecular Physics 104, 2 (2006), 211–228.

[7] Brett W. Bader, Michael W. Berry, and Murray Browne. 2008. Discussion Tracking in
Enron Email Using PARAFAC. Springer London, 147–163.

[8] Brett W Bader and Tamara G Kolda. 2007. E�cient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scienti�c Computing 30, 1 (2007),
205–231.

99

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/1863543.1863581

[9] Satish Balay, William D Gropp, Lois Curfman McInnes, and Barry F Smith. 1997.
E�cient management of parallelism in object-oriented numerical software libraries.
In Modern software tools for scienti�c computing. Springer, Birkhäuser Boston, 163–
202.

[10] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. 2012. E�cient and scalable
computations with sparse tensors. In 2012 IEEE Conference on High Performance
Extreme Computing. 1–6. https://doi.org/10.1109/HPEC.2012.6408676

[11] Nathan Bell and Michael Garland. 2008. E�cient Sparse Matrix-Vector Multiplication
on CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

[12] Je� Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. 2012. Julia: A Fast
Dynamic Language for Technical Computing. (2012).

[13] Aart JC Bik and Harry AG Wijsho�. 1993. Compilation techniques for sparse matrix
computations. In Proceedings of the 7th international conference on Supercomputing.
ACM, 416–424.

[14] Aart JC Bik and Harry AG Wijsho�. 1994. On automatic data structure selection and
code generation for sparse computations. In Languages and Compilers for Parallel
Computing. Springer, 57–75.

[15] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson.
2009. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using
compressed sparse blocks. In Proceedings of the twenty-�rst annual symposium on
Parallelism in algorithms and architectures. ACM, 233–244.

[16] Aydin Buluç and John R. Gilbert. 2008. On the representation and multiplication of
hypersparse matrices. In IEEE International Symposium on Parallel and Distributed
Processing, (IPDPS). 1–11.

[17] Jong-Ho Byun, Richard Lin, Katherine A Yelick, and James Demmel. 2012. Autotuning
sparse matrix-vector multiplication for multicore. EECS, UC Berkeley, Tech. Rep (2012).

[18] Jonathon Cai, Muthu Baskaran, Benoît Meister, and Richard Lethin. 2015. Optimiza-
tion of symmetric tensor computations. In High Performance Extreme Computing
Conference (HPEC), 2015 IEEE. IEEE, 1–7.

[19] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-E�cient
Recon�gurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal
of Solid-State Circuits 52, 1 (Jan 2017), 127–138. https://doi.org/10.1109/JSSC.
2016.2616357

[20] Timothy A Davis. 2006. Direct methods for sparse linear systems. SIAM.

[21] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011).

100

https://doi.org/10.1109/HPEC.2012.6408676
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357

[22] Eduardo F. D’Azevedo, Mark R. Fahey, and Richard T. Mills. 2005. Vectorized Sparse
Matrix Multiply for Compressed Row Storage Format. In Proceedings of the 5th Interna-
tional Conference on Computational Science - Volume Part I (ICCS’05). Springer-Verlag,
Berlin, Heidelberg, 99–106. https://doi.org/10.1007/11428831_13

[23] Albert. Einstein. 1916. The Foundation of the General Theory of Relativity. Annalen
der Physik 354 (1916), 769–822.

[24] Evgeny Epifanovsky, Michael Wormit, Tomasz Kuś, Arie Landau, Dmitry Zuev, Kirill
Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I Krylov.
2013. New implementation of high-level correlated methods using a general block
tensor library for high-performance electronic structure calculations. Journal of
computational chemistry 34, 26 (2013), 2293–2309.

[25] Richard Feynman, Robert B. Leighton, and Matthew L. Sands. 1963. The Feynman
Lectures on Physics. Vol. 3. Addison-Wesley.

[26] Google. 2017. TensorFlow Sparse Tensors. https://www.tensorflow.org/api_
guides/python/sparse_ops. (2017).

[27] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
(2010).

[28] Intel. 2012. Intel math kernel library reference manual. Technical Report. 630813-051US,
2012. http://software.intel.com/sites/products/documentation/hpc/mkl/
mklman/mklman.pdf.

[29] Kenneth E. Iverson. 1962. A Programming Language. Wiley.

[30] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source scienti�c
tools for Python. (2001–). http://www.scipy.org/ [Online; accessed <today>].

[31] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in distributed
memory systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 77.

[32] Venera Khoromskaia and Boris N. Khoromskij. 2015. Tensor numerical methods in
quantum chemistry: from Hartree-Fock to excitation energies. Phys. Chem. Chem.
Phys. 17 (2015), 31491–31509. Issue 47. https://doi.org/10.1039/C5CP01215E

[33] David R. Kincaid, Thomas C. Oppe, and David M. Young. 1989. ITPACKV 2D User’s
Guide.

[34] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article
77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

[35] Fredrik Kjolstad, David Lugato, Stephen Chou, Shoaib Kamil, et al. 2017. The Tensor
Algebra Compiler. https://github.com/tensor-compiler/taco. (2017).

101

https://doi.org/10.1007/11428831_13
https://www.tensorflow.org/api_guides/python/sparse_ops
https://www.tensorflow.org/api_guides/python/sparse_ops
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf
http://www.scipy.org/
https://doi.org/10.1039/C5CP01215E
https://doi.org/10.1145/3133901
https://github.com/tensor-compiler/taco

[36] Donald Ervin Knuth. 1973. The art of computer programming: sorting and searching.
Vol. 3. Pearson Education.

[37] Joseph C Kolecki. 2002. An Introduction to Tensors for Students of Physics and
Engineering. Unixenguaedu 7, September (2002), 29.

[38] Vladimir Kotlyar. 1999. Relational Algebraic Techniques for the Synthesis of Sparse
Matrix Programs. Ph.D. Dissertation. Cornell.

[39] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A relational approach
to the compilation of sparse matrix programs. In Euro-Par’97 Parallel Processing.
Springer, 318–327.

[40] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. 2015. An
input-adaptive and in-place approach to dense tensor-times-matrix multiply. In Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 76.

[41] Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. 2016. Optimizing sparse
tensor times matrix on multi-core and many-core architectures. In Proceedings of the
Sixth Workshop on Irregular Applications: Architectures and Algorithms. IEEE Press,
26–33.

[42] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. 2017. A Uni�ed Optimization
Approach for Sparse Tensor Operations on GPUs. In 2017 IEEE International Confer-
ence on Cluster Computing (CLUSTER). 47–57. https://doi.org/10.1109/CLUSTER.
2017.75

[43] MATLAB. 2014. version 8.3.0 (R2014a). The MathWorks Inc., Natick, Massachusetts.

[44] Devin Matthews. 2017. High-Performance Tensor Contraction without Transposition.
Technical Report.

[45] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM conference
on Recommender systems. ACM, 165–172.

[46] Kathryn S McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and Systems
(TOPLAS) 18, 4 (1996), 424–453.

[47] John Michael McNamee. 1971. Algorithm 408: a sparse matrix package (part I)[F4].
Commun. ACM 14, 4 (1971), 265–273.

[48] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. 2010. Automat-
ically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures. In High
Performance Embedded Architectures and Compilers, Yale N. Patt, Pierfrancesco Foglia,
Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 111–125.

102

https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/CLUSTER.2017.75

[49] Thomas Nelson, Geo�rey Belter, Jeremy G. Siek, Elizabeth Jessup, and Boyana Norris.
2015. Reliable Generation of High-Performance Matrix Algebra. ACM Trans. Math.
Softw. 41, 3, Article 18 (June 2015), 27 pages.

[50] National Institute of Standards and Technology. 2013. Matrix Market: File Formats.
(14 August 2013). http://math.nist.gov/MatrixMarket/formats.html

[51] William Pugh and Tatiana Shpeisman. 1999. SIPR: A new framework for generating
e�cient code for sparse matrix computations. In Languages and Compilers for Parallel
Computing. Springer, 213–229.

[52] Yves Renard. 2017. Gmm++. (2017). http://download.gna.org/getfem/html/
homepage/gmm/first-step.html

[53] Gregorio Ricci-Curbastro and Tullio Levi-Civita. 1901. Méthodes de calcul di�érentiel
absolu et leurs applications. Math. Ann. 54 (1901).

[54] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and Mikhail
Smelyanskiy. 2016. Sparso: Context-driven Optimizations of Sparse Linear Alge-
bra. In Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation. ACM, 247–259.

[55] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[56] Conrad Sanderson. 2010. Armadillo: An Open Source C++ Linear Algebra Library
for Fast Prototyping and Computationally Intensive Experiments. Technical Report.
NICTA.

[57] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. (2017). http://frostt.io/

[58] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a compressed
sparse tensor. In Proceedings of the 5thWorkshop on Irregular Applications: Architectures
and Algorithms. ACM, 5.

[59] Shaden Smith, Jongsoo Park, and George Karypis. 2017. Sparse Tensor Factorization
on Many-Core Processors with High-Bandwidth Memory. 31st IEEE International
Parallel & Distributed Processing Symposium (IPDPS’17) (2017).

[60] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. 2015.
SPLATT: E�cient and Parallel Sparse Tensor-Matrix Multiplication. In 2015 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 61–70.

[61] Edgar Solomonik and Torsten Hoe�er. 2015. Sparse Tensor Algebra as a Parallel
Programming Model. arXiv preprint arXiv:1512.00066 (2015).

[62] Edgar Solomonik, Devin Matthews, Je� R Hammond, John F Stanton, and James
Demmel. 2014. A massively parallel tensor contraction framework for coupled-cluster
computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176–3190.

103

http://math.nist.gov/MatrixMarket/formats.html
http://download.gna.org/getfem/html/homepage/gmm/first-step.html
http://download.gna.org/getfem/html/homepage/gmm/first-step.html
http://frostt.io/

[63] Daniele G Spampinato and Markus Püschel. 2014. A basic linear algebra compiler. In
Proceedings of Annual IEEE/ACM International Symposium on Code Generation and
Optimization. ACM, 23.

[64] Paul Springer and Paolo Bientinesi. 2016. Design of a high-performance GEMM-like
Tensor-Tensor Multiplication. arXiv preprint arXiv:1607.00145 (2016).

[65] Paul Stodghill. 1997. A Relational Approach to the Automatic Generation of Sequential
Sparse Matrix Codes. Ph.D. Dissertation. Cornell.

[66] Bor-Yiing Su and Kurt Keutzer. 2012. clSpMV: A Cross-Platform OpenCL SpMV
Framework on GPUs. In Proceedings of the 26th ACM International Conference on
Supercomputing (ICS ’12). ACM, New York, NY, USA, 353–364. https://doi.org/
10.1145/2304576.2304624

[67] Scott Thibault, Lenore Mullin, and Matt Insall. 1994. Generating Indexing Functions
of Regularly Sparse Arrays for Array Compilers. (1994).

[68] William F Tinney and John W Walker. 1967. Direct solutions of sparse network
equations by optimally ordered triangular factorization. Proc. IEEE 55, 11 (1967),
1801–1809.

[69] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy array:
a structure for e�cient numerical computation. Computing in Science & Engineering
13, 2 (2011), 22–30.

[70] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations
for Sparse Matrix Code. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2015). 521–532.

[71] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. 2005. OSKI: A library of
automatically tuned sparse matrix kernels. Journal of Physics: Conference Series 16, 1
(2005), 521+.

[72] Joerg Walter and Mathias Koch. 2007. uBLAS. (2007). http://www.boost.org/
libs/numeric/ublas/doc/index.htm

[73] R. Clint Whaley and Jack Dongarra. 1998. Automatically Tuned Linear Algebra
Software. In SuperComputing 1998: High Performance Networking and Computing.

[74] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm.
SIGPLAN Not. 26, 6 (May 1991), 30–44.

[75] Michael Joseph Wolfe. 1982. Optimizing Supercompilers for Supercomputers. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign, Champaign, IL, USA.
AAI8303027.

104

https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1145/2304576.2304624
http://www.boost.org/libs/numeric/ublas/doc/index.htm
http://www.boost.org/libs/numeric/ublas/doc/index.htm

[76] Albert-Jan N. Yzelman and Rob H. Bisseling. 2012. A Cache-Oblivious Sparse Matrix–
Vector Multiplication Scheme Based on the Hilbert Curve. In Progress in Industrial
Mathematics at ECMI 2010, Michael Günther, Andreas Bartel, Markus Brunk, Sebastian
Schöps, and Michael Striebel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
627–633.

[77] Huasha Zhao. 2014. High Performance Machine Learning through Codesign and
Roo�ining. Ph.D. Dissertation. EECS Department, University of California, Berkeley.

105

	Introduction
	Tensor Storage Formats
	Existing Tensor Formats
	Supporting Diverse Formats

	Tensor Storage Abstraction
	Coordinate Hierarchies
	Level Capabilities
	Level Properties
	Output Assembly

	Code Generation
	Iteration Graphs and Merge Lattices
	Merge Lattice Optimizations
	Merging Coordinate Hierarchy Levels
	Iterator Conversion
	Code Generation Algorithm

	Evaluation
	Experimental Setup
	Sparse Matrix Computations
	Sparse Higher-Order Tensor Computations
	Comparison of Formats

	Related Work
	Conclusion
	Sample Generated Kernels

